
Dynace
User Manual
Version 5.10

August 16, 2020

by Blake McBride

Copyright c© 1996 Blake McBride All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAM-
AGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

MS-DOS, Windows and Microsoft are registered trademarks of Microsoft Corporation.
WATCOM is a trademark of WATCOM Systems, Inc. All Borland products are trade-
marks or registered trademarks of Borland International, Inc. TEX is a trademark of the
American Mathematical Society. Other brand and product names are trademarks or regis-
tered trademarks of their respective holders.

This manual was typeset with the TEX typesetting system developed by Donald Knuth.

i

Short Contents

1 Introduction . 1
2 Concepts . 19

3 Mechanics . 33

4 Kernel Reference . 87
5 Class Library Reference . 159
Method, Macro, Function And Variable Index 383

iii

Table of Contents

1 Introduction . 1
1.1 Features . 1
1.2 Reasons to use Dynace . 3
1.3 Dynace vs. Other Languages . 4

1.3.1 A comparison of Dynace and C++ . 4
1.3.1.1 Code In Header Files . 4
1.3.1.2 Frequency Of Re-compiles . 4
1.3.1.3 Application Maintainability / Object Encapsulation . . . 5
1.3.1.4 C++ Templates . 5
1.3.1.5 Virtual Functions . 5
1.3.1.6 Learning Curve / Code Complexity 6
1.3.1.7 Code Re-usability . 6
1.3.1.8 Strong vs. Weakly Typed Languages 7
1.3.1.9 Generic Container Classes . 8
1.3.1.10 Runtime class representation . 8
1.3.1.11 Efficiency . 9
1.3.1.12 Compatibility With C . 9
1.3.1.13 Garbage Collection . 9
1.3.1.14 Class Library . 9
1.3.1.15 Conclusion . 9

1.3.2 A comparison of Dynace and Smalltalk . 10
1.4 Obtaining The System . 10
1.5 Contents . 11
1.6 Learning The System . 12
1.7 Quick Start & Tutorial . 13
1.8 Manual Organization . 15
1.9 Contact Information . 16
1.10 Use, Copyrights & Trademarks . 16
1.11 Credits . 16

2 Concepts . 19
2.1 Object Oriented . 21

2.1.1 Encapsulation . 21
2.1.2 Polymorphism And Overloading . 21

2.1.2.1 Early vs. Late Binding . 23
2.1.3 Inheritance . 23

2.2 Dynace . 25
2.2.1 Object . 25
2.2.2 Classes & Instances . 25

2.2.2.1 Superclasses . 26
2.2.2.2 Instance Variables . 26
2.2.2.3 Class Variables . 26

2.2.3 Metaclasses . 26

iv Dynace Manual

2.2.4 Methods . 27
2.2.4.1 Instance Methods . 27
2.2.4.2 Class Methods . 27

2.2.5 Generic Functions . 27
2.2.5.1 Method Lookup . 28

2.2.6 Memory Management and Garbage Collection 29
2.2.7 Threads . 29
2.2.8 Pipes . 30
2.2.9 Semaphores . 30
2.2.10 Dynace Kernel & Class Library . 30

3 Mechanics . 33
3.1 Setup, Configuration & Build Procedures . 33

3.1.1 Build Utilities . 33
3.1.2 DMAKE Build Setup . 33
3.1.3 Building Dynace From Scratch . 34
3.1.4 Examples Setup . 34
3.1.5 Example Files . 34
3.1.6 Building The Examples . 34
3.1.7 Debugging . 34
3.1.8 Building Your Own Application . 35
3.1.9 DMAKE . 35

3.2 Using Dynace Classes . 36
3.2.1 External Naming Conventions . 36
3.2.2 Internal Naming Conventions . 37
3.2.3 Class Hierarchy . 38
3.2.4 Example Code . 38
3.2.5 Include File . 39
3.2.6 Declarations . 40
3.2.7 Initializing Dynace . 40
3.2.8 Generic Functions . 40
3.2.9 Creating Objects . 40
3.2.10 Using Objects . 41
3.2.11 Disposing of Objects . 41

3.2.11.1 Disposal Generics . 41
3.2.11.2 Garbage Collection . 42

3.2.12 Generics Files . 42
3.2.13 Compiling & Linking . 43

3.2.13.1 Files . 43
3.2.13.2 Compiling & Linking . 43

3.2.14 Learning Dynace Classes . 43
3.3 Defining Dynace Classes . 44

3.3.1 Class Definition File Syntax . 45
3.3.1.1 Class Definition . 47
3.3.1.2 Public Method Definition . 49
3.3.1.3 Private Method Definition . 51
3.3.1.4 Super Messages . 51
3.3.1.5 Comments . 52

v

3.3.2 Example Code . 52
3.3.3 Class Definition . 54
3.3.4 Defining Methods . 54

3.3.4.1 Accessing Instance And Class Variables 54
3.3.4.2 Determining the Class of an Object 58
3.3.4.3 Sending Super Messages . 58

3.3.5 Class Initialization . 60
3.3.5.1 Class Initialization Function . 60
3.3.5.2 An Example . 60

3.3.6 What Gets Linked . 60
3.3.7 The gNew Class Method . 61
3.3.8 The Dispose Instance Method . 61
3.3.9 Creating Generic Files . 62

3.4 Dynace Pre-Processor (DPP) . 63
3.4.1 Controlling DPP . 63
3.4.2 DPP Status Messages . 64
3.4.3 Input Options (-g & -G) . 64

3.4.3.1 Generic Declaration Input . 64
3.4.3.2 Source File Input (-s & -p) . 64

3.4.4 Output Options . 65
3.4.4.1 Generic Declaration File Creation (-h) 65
3.4.4.2 Generic Source File Creation (-c) . 65
3.4.4.3 Processing Class Definition Files (-p) 65
3.4.4.4 Java Interface Files (-j) . 66
3.4.4.5 Scheme Interface Files (-L1 & -L2) 66

3.4.5 Misc. Options . 66
3.4.5.1 Preventing Unnecessary Compiles (-t) 66
3.4.5.2 Removing Classes or Generics (-r) . 67
3.4.5.3 Splitting the Generics File (-M) . 67
3.4.5.4 Including Additional
Header Files (-Isc, -Iac, -Ish & -Iah) . 67

3.4.5.5 Ignoring Errors (-i) . 68
3.4.5.6 Quiet Operation (-q) . 68
3.4.5.7 Return Code (-z) . 68
3.4.5.8 Compile Time Argument Checking (-N) 68
3.4.5.9 Disabling #line directives (-nld) . 68
3.4.5.10 Extra #line directives (-eld) . 68
3.4.5.11 Preprocessing Strategies (-S) . 68
3.4.5.12 Generic Overloading (-X) . 69
3.4.5.13 Force Generics.h File Generation (-f) 69
3.4.5.14 Generating External Structures (-iv & -cv) 70
3.4.5.15 Class Initialization (-ni) . 70
3.4.5.16 Auto Include Generation (-nai) . 70
3.4.5.17 Macro Guard Typedefs (-mg) . 70

3.5 Dynace Customization & Special Techniques 71
3.5.1 Makefile / Generics.h File Dependencies 71

3.5.1.1 Adding New Classes . 71
3.5.1.2 Removal Of Classes . 71

vi Dynace Manual

3.5.1.3 Adding New Generics . 72
3.5.1.4 Generic Removal . 72
3.5.1.5 Generic Argument Or Return Type Changes 72

3.5.2 Compile Time Argument Checking . 73
3.5.2.1 Compile Time vs. Runtime Argument Checking 73
3.5.2.2 Sharing Methods . 74

3.5.3 Runtime Argument Validation . 74
3.5.3.1 Additional Argument Validation . 74

3.5.4 Methods With A Variable Number Of Arguments 75
3.5.5 Tracing Facility . 75
3.5.6 Memory Management and Object Disposal 75
3.5.7 Speeding Up IsObj . 76
3.5.8 Garbage Collection . 76
3.5.9 Global or Static Variables . 77
3.5.10 Boehm Garbage Collector . 78
3.5.11 Native Thread Support . 78
3.5.12 Method Cache . 79
3.5.13 Memory Compaction . 79
3.5.14 Avoiding Runtime Method Lookup Costs 79
3.5.15 Generic Functions As First Class C Objects 80
3.5.16 Static Binding . 80
3.5.17 Allocating Objects From The Stack . 80

3.6 Notes On Compilers, Rebuilding And Porting Dynace 82
3.6.1 DMAKE . 82
3.6.2 MS–DOS . 82

3.6.2.1 Microsoft Visual C++ . 82
3.6.2.2 WATCOM Compilers . 83
3.6.2.3 Borland C++ . 83
3.6.2.4 Symantec C++ . 83

3.6.3 UNIX . 83
3.6.4 Using A Debugger . 84
3.6.5 Porting To Other Compilers, Memory Models or OSs 84

3.6.5.1 JumpTo Assembler Code . 84
3.6.5.2 GC & CPU Registers . 85
3.6.5.3 Memory Alignment . 85
3.6.5.4 Linear vs. Segmented Memory . 85
3.6.5.5 Thread Timer . 86
3.6.5.6 Setjmp/longjmp Functionality . 86

4 Kernel Reference . 87
4.1 Kernel Class Hierarchy . 88
4.2 Object Class . 89

4.2.1 Object Class Methods . 89
4.2.2 Object Instance Methods . 89

4.3 Behavior Class . 98
4.3.1 Behavior Class Methods . 98
4.3.2 Behavior Instance Methods . 98

4.4 Class Class . 106

vii

4.4.1 Class Class Methods . 106
4.4.2 Class Instance Methods . 108

4.5 MetaClass Class . 109
4.6 Method Class . 110

4.6.1 Method Class Methods . 110
4.6.2 Method Instance Methods . 110

4.7 GenericFunction Class . 113
4.7.1 GenericFunction Class Methods . 113
4.7.2 GenericFunction Instance Methods . 114

4.8 Dynace Class . 117
4.8.1 Dynace Class Methods . 117
4.8.2 Dynace Instance Methods . 127

4.9 Kernel Macros . 128
4.10 Kernel Functions . 154
4.11 Kernel Data Types . 158

5 Class Library Reference . 159
5.1 Class Library Hierarchy . 159
5.2 Array Class . 161

5.2.1 Array Class Methods . 161
5.2.2 Array Instance Methods . 161

5.3 Association Class . 166
5.3.1 Association Class Methods . 166
5.3.2 Association Instance Methods . 166

5.4 BitArray Class . 167
5.4.1 BitArray Class Methods . 167
5.4.2 BitArray Instance Methods . 167

5.5 BTree Class . 169
5.5.1 BTree Class Methods . 169
5.5.2 BTree Instance Methods . 169

5.6 BTreeNode Class . 178
5.7 Character Class . 179

5.7.1 Character Class Methods . 179
5.7.2 Character Instance Methods . 179

5.8 CharacterArray Class . 181
5.9 Constant Class . 182

5.9.1 Constant Class Methods . 182
5.9.2 Constant Instance Methods . 182

5.10 Date Class . 184
5.10.1 Date Class Methods . 184
5.10.2 Date Instance Methods . 185

5.11 DateTime Class . 192
5.11.1 DateTime Class Methods . 192
5.11.2 DateTime Instance Methods . 193

5.12 Dictionary Class . 200
5.12.1 Dictionary Class Methods . 200
5.12.2 Dictionary Instance Methods . 200

5.13 DoubleFloat Class . 205

viii Dynace Manual

5.13.1 DoubleFloat Class Methods . 205
5.13.2 DoubleFloat Instance Methods . 205

5.14 DoubleFloatArray Class . 207
5.15 File Class . 208

5.15.1 File Class Methods . 208
5.15.2 File Instance Methods . 210

5.16 FindFile Class . 212
5.16.1 FindFile Class Methods . 212
5.16.2 FindFile Instance Methods . 213

5.17 FloatArray Class . 216
5.18 IntegerArray Class . 217
5.19 IntegerAssociation Class . 218

5.19.1 IntegerAssociation Class Methods . 218
5.19.2 IntegerAssociation Instance Methods . 218

5.20 IntegerDictionary Class . 221
5.20.1 IntegerDictionary Class Methods . 221
5.20.2 IntegerDictionary Instance Methods . 221

5.21 Link Class . 226
5.21.1 Link Class Methods . 226
5.21.2 Link Instance Methods . 226

5.22 LinkList Class . 234
5.22.1 LinkList Class Methods . 234
5.22.2 LinkList Instance Methods . 234

5.23 LinkObject Class . 242
5.23.1 LinkObject Class Methods . 242
5.23.2 LinkObject Instance Methods . 242

5.24 LinkObjectSequence Class . 249
5.24.1 LinkObjectSequence Class Methods . 249
5.24.2 LinkObjectSequence Instance Methods 249

5.25 LinkSequence Class . 251
5.25.1 LinkSequence Class Methods . 251
5.25.2 LinkSequence Instance Methods . 251

5.26 LinkValue Class . 253
5.26.1 LinkValue Class Methods . 253
5.26.2 LinkValue Instance Methods . 253

5.27 LongArray Class . 256
5.28 LongInteger Class . 257

5.28.1 LongInteger Class Methods . 257
5.28.2 LongInteger Instance Methods . 257

5.29 LookupKey Class . 258
5.29.1 LookupKey Class Methods . 258
5.29.2 LookupKey Instance Methods . 258

5.30 LowFile Class . 261
5.30.1 LowFile Class Methods . 261
5.30.2 LowFile Instance Methods . 261

5.31 Number Class . 263
5.31.1 Number Class Methods . 263
5.31.2 Number Instance Methods . 263

ix

5.32 NumberArray Class . 271
5.32.1 NumberArray Class Methods . 271
5.32.2 NumberArray Instance Methods . 271

5.33 ObjectArray Class . 280
5.33.1 ObjectArray Class Methods . 280
5.33.2 ObjectArray Instance Methods . 280

5.34 ObjectAssociation Class . 282
5.34.1 ObjectAssociation Class Methods . 282
5.34.2 ObjectAssociation Instance Methods . 282

5.35 ObjectPool Class . 285
5.35.1 ObjectPool Class Methods . 285

5.36 Pipe Class . 286
5.36.1 Pipe Class Methods . 286
5.36.2 Pipe Instance Methods . 287

5.37 Pointer Class . 290
5.37.1 Pointer Class Methods . 290
5.37.2 Pointer Instance Methods . 290

5.38 PointerArray Class . 293
5.38.1 PointerArray Class Methods . 293
5.38.2 PointerArray Instance Methods . 293

5.39 PropertyList Class . 295
5.39.1 PropertyList Class Methods . 295
5.39.2 PropertyList Instance Methods . 295

5.40 Semaphore Class . 298
5.40.1 Semaphore Class Methods . 298
5.40.2 Semaphore Instance Methods . 299

5.41 Sequence Class . 302
5.42 Set Class . 303

5.42.1 Set Class Methods . 303
5.42.2 Set Instance Methods . 304

5.43 SetSequence Class . 313
5.43.1 SetSequence Class Methods . 313
5.43.2 SetSequence Instance Methods . 313

5.44 ShortArray Class . 314
5.44.1 ShortArray Class Methods . 314

5.45 ShortInteger Class . 315
5.45.1 ShortInteger Class Methods . 315
5.45.2 ShortInteger Instance Methods . 315

5.46 Socket Class . 316
5.46.1 Socket Class Methods . 316
5.46.2 Socket Instance Methods . 316

5.47 Stream Class . 321
5.47.1 Stream Class Methods . 321
5.47.2 Stream Instance Methods . 321
5.47.3 Stream Global Variables . 325

5.48 String Class . 327
5.48.1 String Class Methods . 327
5.48.2 String Instance Methods . 330

x Dynace Manual

5.49 StringAssociation Class . 351
5.49.1 StringAssociation Class Methods . 351
5.49.2 StringAssociation Instance Methods . 351

5.50 StringDictionary Class . 355
5.50.1 StringDictionary Class Methods . 355
5.50.2 StringDictionary Instance Methods . 355

5.51 Thread Class . 360
5.51.1 Thread Class Methods . 360
5.51.2 Thread Instance Methods . 362
5.51.3 Thread Macros . 366

5.52 Time Class . 369
5.52.1 Time Class Methods . 369
5.52.2 Time Instance Methods . 370

5.53 UnsignedShortArray Class . 380
5.54 UnsignedShortInteger Class . 381

5.54.1 UnsignedShortInteger Class Methods 381
5.54.2 UnsignedShortInteger Instance Methods 381

Method, Macro, Function And Variable Index . . 383

1

1 Introduction

Dynace (pronounced dī-ne-sē) stands for a “DYNAmic C language Extension”. It is an
object oriented extension to the C or C++ languages.

Dynace is written in the C language, designed to be as portable as possible and achieve
its goals without changing or adding much to the standard C syntax.

Dynace is a preprocessor, include files and a library which extends the C or C++ lan-
guages with advanced object oriented capabilities, automatic garbage collection and multiple
threads. Dynace is designed to solve many of the problems associated with C++ while being
easier to learn and containing more flexible object oriented facilities. Dynace is able to add
facilities previously only available in languages such as Smalltalk and CLOS without all the
overhead normally associated with those environments.

This manual is designed for a programmer who is proficient in the C language, but has
little or no knowledge of object oriented concepts. We will start with some object oriented
concepts, and then discuss how these concepts are realized with Dynace. We will then
continue with a detailed description of Dynace usage. Finally, we will discuss the various
classes which are built on top of the Dynace kernel.

1.1 Features

The following table lists some of the key features of Dynace:

• Written in C and designed to maximize portability (currently tested on 32 and 64 bit
environments including Linux, Mac, Windows & various other systems such as Plan 9,
VMS, IoT devices, etc.)

• Very little added to the standard C syntax (very easy to learn for anyone familiar with
C)

• May be intermixed and linked with regular C or C++ code (easy to incrementally add
OO features to pre-existing apps)

• Multiple Inheritance

• True Dynamic Binding (polymorphism) Using Generic Functions

• Fast, Cached, Method Lookup

• Full Metaclass System (runtime class representation)

• Enforced Encapsulation – very important for large applications! (No longer place 50\%
of your code in include files, as in C++. If something changes no need to recompile
everything in Dynace. If a class needs to be changed you don’t need to worry who is
looking under the hood, as in C++)

• Modeled after CLOS providing the most flexible solution without the overhead and
runtime penalty, and large memory requirements of an interpreter (as in CLOS and
Smalltalk).

• Compiles with a regular C or C++ compiler – not an interpreter – runs FAST! (Doesn’t
have the runtime overhead and performance penalty experienced with CLOS and
Smalltalk)

2 Dynace Manual

• Automatic Garbage Collection (system automatically frees unused objects – you no
longer have to keep track of what and when things must be freed)

• Multiple Threads

• Named & Unnamed Pipes

• Named & Unnamed Counting Semaphores

• Any Class located anywhere in the class hierarchy may be changed without necessitat-
ing the re-compilation of any other module so long as the pre-existing method protocols
remain unchanged. (No need to re-compile the world because you’re not sure who is
using or subclassing it – A major problem with C++ !!)

• Uniform representation of all objects including Classes, Instances, Methods, and Gener-
ics. This allows easy construction of generic container classes.

• Powerful base class library including fundamental data types and collection classes such
as Dictionary and Double Linked Lists.

Chapter 1: Introduction 3

1.2 Reasons to use Dynace

The following lists several reasons to use Dynace:

1. Drastically reduce application complexity and increase its maintainability by enforcing
strong encapsulation – no more need to wonder which other modules are modifying your
instance variables or what effect changes in one module will have on other modules.

2. Drastically reduce the need for recompilation since all class information is defined in the
source file (*.c) instead of header files (*.h). Most changes to a class, including its place
in the class hierarchy, instance or class variable declarations, new or changed methods
(member functions), have no compile time effect on modules which use, subclass or
inherit from the changed class.

3. Easily build generic functionality (like generic container classes) which translates into
increased use of existing code since Dynace treats all objects, including classes, in a
uniform manner and supports weak and runtime object typing.

4. Dynace is the easiest OO language to learn since it’s almost entirely normal C syn-
tax, yet offers features far surpassing all the alternatives such as true dynamic binding
using generic functions, multiple inheritance, fully metaclass based (runtime class rep-
resentation) from the ground up (like CLOS or Smalltalk), garbage collector (system
automatically frees unused objects), threader, and a powerful class library. Defining
classes in Dynace is simple, all of the complexity and house cleaning chores are handled
by the Dynace pre-processor (dpp).

5. Dynace applications run fast because they are compiled by your normal C compiler into
fast machine code (no interpreter or p-code). Dynace includes a pre-processor which
converts Dynace class definition files (which contain mostly straight C code) into plain
C source files.

6. It’s easy to incrementally add OO facilities into pre-existing C code because Dynace is
just more C code.

7. No longer be the victim of a vendor – Dynace comes with full, portable source code.

8. You no longer have to distribute header files containing your proprietary class structure
in order for third parties to be able to use and subclass your class. Dynace doesn’t
need any of this information.

9. Dynace OO model is much more flexible due to its metaobject base. Now you can
actually have greater control over classes as well as instances.

10. Dynace applications are royalty free (with the appropriate license).

4 Dynace Manual

1.3 Dynace vs. Other Languages

1.3.1 A comparison of Dynace and C++

The Dynace object oriented extension to the C language was created in order to solve many
of the problems associated with C++ while retaining more backward compatibility with C
than C++ and offering stronger object oriented facilities. This section discusses many of
the shortcomings of C++ and how Dynace address them, as well as other important facts
regarding Dynace.

1.3.1.1 Code In Header Files

C++ greatly encourages the movement of code and class definitions from source files (.c) to
header files (.h). Because of its design, C++ requires this in order to support many of its
compile time facilities. However, while enabling many compile time facilities, it is also the
source of many of C++’s shortcomings. Dynace is able to offer similar compile time facilities
(argument checking, ability to subclass a pre-existing class, etc.) while greatly encouraging
movement of code from header files (.h) to source files (.c). In fact, all Dynace class
definitions are entirely contained within source files. The consequences of these fundamental
design differences will ripple throughout this comparison.

C++ requires class definitions to be placed in header files and included by other source
files for three main reasons. The first reason is so that when other files need to declare or
create new instances of a given class, C++ needs to know the size of the instance at compile
time.

The second reason is that C++ needs to know the entire structure of classes at compile
time in order to create a new subclasses of them. The third reason is that C++ needs to
know at compile time the names and locations of all externally accessible instance members
(through public, protected and friend members).

Dynace is able to perform these facilities with an increased level of abstraction and code
protection without any class definitions in header files.

1.3.1.2 Frequency Of Re-compiles

One very important consequence of placing class definitions in header files is that even very
small changes in a class’s definition necessitates the re-compilation of source files which
implement the class, files which use the class and files which subclass that class. On large,
real-life applications this can amount to several hours of time. And for applications in
which a lot of development is being done, this may be required every thirty minutes. The
net effect of this problem is that compile time quickly becomes the place where most of the
development time is spent.

Dynace, on the other hand, places all class definition code in source (.c) files. With
Dynace, you can have a massive application, take a class out of the middle of the class
hierarchy and totally modify it, and so long as the pre-existing member functions (methods)
retain their interface protocol (take the same arguments), only the one source file which
implements that class would have to be re-compiled. Even if the member function’s syntax
changed, the only thing that would have to be modified and re-compiled were those modules
who used the changed member function – something which would have to be done in any

Chapter 1: Introduction 5

environment. The net effect of Dynace’s approach is that only the absolute minimum
amount of time is wasted on compiles.

1.3.1.3 Application Maintainability / Object Encapsulation

One of the principal features of the object oriented paradigm is encapsulation. Encapsu-
lation is the ability to combine code and data into a package such that the only external
access provided is through a well defined interface. There are several important benefits
associated with strong encapsulation.

At development time, strong encapsulation helps organize the design and breaks up the
code into manageable size chunks. At debug time, strong encapsulation significantly limits
the amount of code a programmer has to look at in order to locate the problem. After
development, strong encapsulation makes code easier to understand by new programmers
and limits the amount of code which must be checked and modified when a given module
is changed. Strong encapsulation can have a major effect on the development, debug, and
enhancement times associated with a project, not to mention reliability of the code.

C++ supports four types of encapsulation (protection) associated with members of a class:
private, protected, public and friends. Of the four types, three of them (public, protected
and friends) are ways to circumvent C++’s encapsulation features. And private members
are only private from a narrow standpoint since it is declared in a publicly accessible header
file.

Note that from a technical standpoint, there is never a reason for protected, public or
friend members. Anything you could ever need to do can be done with private members
and access functions. The net effect is that C++, for no apparent technical reason, does not
encourage strong encapsulation, nor does it even have the facilities to support it.

Dynace, on the other hand, enforces strong encapsulation (private members) and places
all member definitions in a source (.c) file. With this approach, all the benefits of strong
encapsulation may be maximally achieved.

1.3.1.4 C++ Templates

In order to write similar code for many classes C++ provides templates. Templates are
an extremely poor attempt to patch some of the blatant shortcomings of C++. There
are two principal problems with templates. First, it suffers from the same compile-time
limitations as all the rest of C++, namely, templates only work on classes which were set up
at compile-time. Any time you want to add a new class, rebuild time. The second problem
is unnecessary duplication of code. If you compile a template for five classes, you get five
copies of the same code!

Dynace has no templates and no need for them. Dynace methods support any class at
runtime. No need to re-compile the existing ones or to duplicate any code. The existing
code adapts to new classes at runtime!

1.3.1.5 Virtual Functions

Virtual functions give C++ a great deal of flexibility. However, there is a major problem
associated with them. If you purchase a third party library and the vendor chooses not

6 Dynace Manual

to implement a particular function as a virtual function and you later need to use it as a
virtual function, it can’t be done without the source code.

In Dynace all methods operate like C++ virtual member functions. There is never a
one you can’t use like a virtual function. Dynace implements these methods in a memory
efficient manner so it’s not prohibitive.

1.3.1.6 Learning Curve / Code Complexity

C++ is a large and complex language from a syntactical standpoint, especially when com-
pared to the minimalist C language. There are two problems associated with this complexity.
The first is that the learning curve associated with going from a proficient C programmer
to a proficient C++ programmer is at least six months for most programmers. The second
problem is that code written in C++ tends to be more complex and therefore harder for new
programmers to understand and maintain. The bottom line is that C++ development tends
to be much more expensive than C and employers end up being much more dependent on
a few “experts”.

Dynace, on the other hand, uses straight C syntax and only adds a few, easy to learn,
constructs. The learning curve associated with Dynace is about one week (although you
can actually use it the first day). Pre-existing C code can co-exist with Dynace code better
than C++. And due to the simpler syntax and strong encapsulation features of Dynace,
it is much easier for new programmers to pick up Dynace and the new application. This
translates into real dollars saved.

Dynace adds powerful capabilities of object oriented technology in a simple, idealistic,
theoretically pure way. Dynace has taken the best attributes of CLOS, Smalltalk and
Objective–C and implemented it in a way which is natural to a C programmer. A Dynace
program looks just like any other C program. Dynace is, therefore, much simpler and easier
to master than C++ and the resulting tool is more powerful and expressive.

1.3.1.7 Code Re-usability

C++ is a strongly typed language. This means that all type information associated with
variables and function arguments must be completely specified at compile time. While
attempting to create reusable code a programmer must create routines which are general
purpose and can therefore be used in a variety of situations. The problem is that these two
points are at odds with each other.

When creating general purpose (reusable) software components it is often desirable to
have the routine handle a variety of data types, as is often needed in container classes.
Strongly typed languages require that the potential data types be known at the compile
time of the routine. This means that every time a new data type is used the “general
purpose” routine would have to be modified and recompiled. How many books and articles
have you seen which attempt to trick C++ into handling data in a generic fashion? This
important feature of good software development (creating reusable software) is an up hill
battle with C++.

Dynace, on the other hand, is a weakly typed language. This means that Dynace treats
all objects (including classes) in a generic fashion. Creating generic (reusable) routines like

Chapter 1: Introduction 7

container classes are trivial in Dynace. Dynace is also able to validate an object or its type
at runtime.

1.3.1.8 Strong vs. Weakly Typed Languages

Strongly typed languages (such as C++) require that the programmer specify exactly what
data types a particular routine may handle. Whereas, weakly typed languages (such as
Dynace, CLOS and Smalltalk) allow a programmer to define a process in abstract terms
without specifying any particular data types. It’s kind of like the difference between speak-
ing literally and speaking abstractly.

If teaching a child were anything like programming a computer and you could only teach
him literally you would have to explain to him that if he had two dogs and someone gave
him another, he would then have three dogs. If he has two apples and someone gives him
another he’ll have three apples. If he has two trains and someone gives him another he’ll
have three trains, and so on. However, if you could teach your child in abstract terms you
could simply tell him that if he has two of something and he receives another, he’ll then
have three of them.

The advocates of strongly typed languages like to point out that their language can
uncover an incorrect argument to a function at compile time, before the program is even
run. The reality of it is that passing the incorrect data type to a function is just one of
many, many possible types of errors a given program may contain. Why restrict a language’s
capabilities so severely to uncover just one type of error.

In fact when programming in C++ it is quite easy to create a situation where the correct
type is being passed (a pointer to some structure) but when the code gets run it hangs
the system because it wasn’t initialized and the compiler can’t check for that. So C++, as
well as other strongly typed languages, are quite good at performing static, compile time,
type checking at the expense of a flexible language. And then when it comes to dynamic
(runtime) checking you’re on your own.

While Dynace does check arguments at compile time, it does not attempt to validate
each argument beyond whether it’s an object or a particular C data type. In other words,
all Dynace objects are treated opaquely. Not only can Dynace verify the type at runtime
(essentially the same test C++ performs at compile time), but it will also validate an unini-
tialized pointer! If there is an attempt to use an uninitialized object or an incorrect type
of object Dynace prints an error message. No hung system.

Weakly typed languages, such as Dynace, provide an extremely more flexible and pow-
erful means of expressing computer algorithms, and they do this with an increase in error
detection and handling as compared to strongly typed languages such as C++.

Weak typing is a much stronger approach to implementing the object oriented model.
Weak typing allows much more powerful, flexible, and general purpose solutions to be
developed. Since strong typing requires the types of data a routine handles be known at
compile time, at the very least, the module will have to be recompiled if it is to handle a
new type of object, if not entirely re-coded. Weak typing allows the development of truly
general purpose, reusable software components.

8 Dynace Manual

1.3.1.9 Generic Container Classes

The tremendous difficulty involved in tricking C++ into implementing generic container
classes, such as dictionary, linked list and bags, typifies the biggest problem with C++,
lack of runtime flexibility. How many books and computer magazine articles have to be
written in order to show how to trick C++ into accomplishing something which should be
fundamental and trivial. It lies at the heart of the value of object oriented concepts.

The properties of C++ which make is so inflexible are it’s strong data typing and lack of
runtime class representation.

Creating generic container classes is fundamental and trivial in Dynace. This is a very
important difference.

1.3.1.10 Runtime class representation

C++ has no runtime representation of classes and no metaclasses. In fact, a C++ class is not
an object at all. In short, C++ is a half hearted attempt to add object oriented capabilities to
the C language. Dynace implements all object oriented concepts in a pure, flexible fashion.
In fact, in Dynace, classes are objects just like any other.

Since C++ has no runtime class representation its compiler must know the entire (sup-
posed to be private) structure of every class the module might use. This causes two very
significant problems. First of all, it encourages the programmer to put a great deal of code
in the header files. The more code put in the header the greater the chance that something
in the header will have to be changed when modifying a class. If a header file changes all
programs which are dependent on this header file must be re-compiled. This is because
the “new” operator must know the class size at compile time (even if all the elements are
private!). What this ends up causing, in a real life application where there are many classes
in a complex hierarchy, is that the entire application must be totally re-compiled every time
there is the smallest modification (in order to play it safe). This one factor can multiply
the time it takes to develop an application.

The second problem with not having a runtime class representation is a lack of flexibility
and a lack of the ability to create truly general purpose routines. Since C++ does all its
type checking at compile time it makes sense that at runtime it can only handle the types
it was compiled for. Therefore, if you compile some general purpose routines into a library
(or worse yet, buy a third party’s library without source) and later wish to use its existing
functionality, but for a class it was not compiled for, you would have to make some sort of
code changes and re-compile the library (if you have source).

Since Dynace has a runtime class representation it doesn’t have any of these problems.
All code and structure definitions for a class reside in the .c file. There is no need to put
anything in a header. If a class changes it has no compile-time effect on any other modules.
As long as its original interface remains the same (although at can be added to) not a single
line of code in any other module would have to be changed, no other modules would have
to be re-compiled, and no libraries rebuilt.

Again, since Dynace has a runtime representation truly general purpose routines can be
build without requiring the old code to be re-compiled. You can build a general purpose
routine, put it in a library, and then two years later create a totally new class, and run

Chapter 1: Introduction 9

an instance of the new class against the old code in the library without ever having to
re-compile the old code.

1.3.1.11 Efficiency

Dynace is not an interpretive language. Dynace programs are compiled with a standard C
compiler. The majority of the code is just standard compiled C code with no performance
penalty. The only place Dynace incurs a runtime cost is at the point of method dispatch.
Since C++ also incurs a runtime cost when using virtual functions, there is not much of
a difference between the performance of Dynace programs when compared to C++. In
addition, Dynace gives the ability to locally cache a method pointer in tight loops so as to
totally dispense with the runtime overhead.

1.3.1.12 Compatibility With C

C++ is somewhat compatible with C, however, Dynace is entirely compatible with C. Code
which uses Dynace classes is just plain C code. Code which defines new Dynace classes
consists of standard C with a few added constructs to define classes and methods. This
then goes through a Dynace preprocessor which emits straight C.

The two main points about this is that Dynace is more compatible with C than C++,
and it’s easier to incrementally add object oriented facilities to a pre-existing C application
with Dynace.

1.3.1.13 Garbage Collection

While C++ will automatically dispose of some types of objects (automatic variables), it can
not automatically dispose of those objects allocated from the heap. In a complex application
most objects would be allocated from the heap, requiring explicit disposal in C++. Dynace’s
garbage collector handles all object reclamation automatically.

1.3.1.14 Class Library

C++ environments come with an absolute bare minimum of fundamental classes. Of course
there are many C++ class libraries available, however, given the fundamental architecture of
C++, these libraries are typically incompatible and difficult to understand, use and extend.

Dynace comes with a complete set of fundamental classes including classes to represent all
the basic C types, a variety of container classes (sets, dictionaries, linked lists, associations,
etc.), multi-dimensional dynamic arrays, threads, pipes and semaphores.

1.3.1.15 Conclusion

Dynace adds powerful object oriented capabilities in a simple, idealistic, theoretically pure
way. Dynace has taken the best attributes of CLOS, Smalltalk and Objective–C and im-
plemented it in a way which is natural to a C programmer. Dynace has no special syntax
and is easy to learn. A Dynace program looks just like any other C program.

Dynace offers effective solutions to a variety of problems associated with software de-
velopment, including reducing development time by segregating and organizing various ap-
plication components, providing a powerful class library, making pre-written components
maximally reusable, reducing language and application learning curves for new program-
mers, and making an application easy to debug, maintain and enhance.

10 Dynace Manual

1.3.2 A comparison of Dynace and Smalltalk

Dynace is a very dynamic and flexible language just like Smalltalk. Dynace and Smalltalk
share the following features:

• Both are weakly typed languages and therefore allow for the development of powerful
routines which provide truly generic and re-usable software components.

• Both provide true dynamic binding on all messages.

• Both provide tight encapsulation of objects for easy program maintenance.

• Both provide a similar class hierarchy including the Object, Behavior, Class and Meta-
Class classes.

• Both provide a complete metaclass system which allows all objects in the system to be
treated uniformly.

• Both provide the ability to perform automatic reclamation of unneeded objects (garbage
collection).

• Both provide the ability to create, synchronize and pass information between multiple
independent processes (threads).

The following lists some of the differences between Dynace and Smalltalk:

• Dynace uses a standard C syntax which is easy for C programmers to learn.

• Dynace may be freely mixed with regular C code and may also link with pre-existing
C libraries.

• Dynace uses a standard C compiler and generates stand alone native executable code.
Smalltalk typically generates code for a virtual machine which must be included or
bound with an application.

• Since Dynace generates native code it runs many times faster than Smalltalk and
requires much, much less RAM (just a little more than a typical C program).

• Dynace is written in standard C and comes with full source code. It is therefore very
portable and drastically reduces your dependence on a vendor.

• Dynace supports multiple inheritance.

1.4 Obtaining The System

The entire system is available at https://github.com/blakemcbride/Dynace

https://github.com/blakemcbride/Dynace

Chapter 1: Introduction 11

1.5 Contents

Once the system has been installed there will exist a series of directories under the Dynace
root directory. The system will contain the following directories:

lib This is the location of all the Dynace libraries. You may wish to add this
directory to the list of paths your linker searches.

include This is the location of the include files necessary to compile Dynace applications.
You may need to add this directory to the path your compiler uses to search
include files.

bin Executable files necessary for development with the Dynace system. This di-
rectory should be added to your normal search path for executable programs.

examples Example programs used to learn & demonstrate the Dynace object oriented
extension to C.

WinExam Example programs used to learn & demonstrate WDS.

docs Misc. documentation files.

manual The Dynace and WDS manuals.

kernel Complete source to the Dynace kernel.

class Source to all of the Dynace base classes.

threads Complete source to the multi-threader, pipes and semaphores.

generics Files necessary to build the system generics files from scratch.

dpp Complete source to the dpp utility.

Windows Complete source to the Dynace WDS library.

utils Complete source to the utility programs.

cld A GUI program for creating Win32 dialogs. This also works on Linux and Mac
through Wine.

ODBC Library to access SQL tables through ODBC.

Resources Utility to read Windows resource files.

Registry Utilities to deal with Windows registry.

OLE Link between Microsoft OLE technology and Dynace.

The only files that are absolutely necessary for a developer are those located in the lib,
include and bin directories and (for Windows only) utils/startup.mk.

12 Dynace Manual

1.6 Learning The System

This manual contains a description and rationale of object oriented concepts, a detailed
description of the Dynace system and complete reference to all Dynace classes including
examples. The example programs included with Dynace provide a step-by-step tutorial to
getting started.

A user of the Dynace system will need to know the C language. However, no previous
experience with object oriented concepts is necessary.

The best approach to learning Dynace would be to start by reading chapters 1 (Introduc-
tion) and 2 (Concepts). Then read sections 3.1 and 3.2 (Using Dynace Classes, including its
sub-sections) while working through the example programs. When the example programs
start creating their own classes follow with section 3.3 (Defining Dynace Classes, including
its sub-sections). Ultimately it is best to read the entire manual.

If you are somewhat familiar with object oriented concepts and wish to dive right in and
get a feel for the system you may go directly to the example programs after reading this
chapter.

While working through the examples you may refer to the index (located in the back of
the manual) to locate information on all Dynace methods, macros, variables, functions and
data types.

It is highly recommended that a programmer already familiar with object oriented con-
cepts still read the entire Concepts chapter because of its particular relevance to the ap-
proach taken in the Dynace system.

Chapter 1: Introduction 13

1.7 Quick Start & Tutorial

The Dynace system includes a series of examples which serve both as a Quick Start and
a Tutorial. Each example is contained in its entirety in an independent directory. This is
done in order to illustrate the exact files and steps necessary to create a single application.

The example programs are contained in sub-directories under the examples directory and
are named examNN (where the NN is a two digit number). These numbers are significant
in that they describe the correct order that the examples should be followed. Each example
depends on knowledge built up in previous examples which is not repeated.

Each example contains a readme file which describes information relating to the purpose
of the example and build instructions. These files should be read first. Each example also
includes makefiles which are used by the included dmake (Windows only) make utility. The
source to the examples is also included.

The example programs are not intended as a substitute for the manual. They are simply
meant to augment the manual and accelerate the initial learning curve.

The following is a list of the enclosed examples:

01 Illustrates the steps necessary to compile and link a program which incorporates
and correctly initializes Dynace.

02 Illustrates the creation, use and disposal of a simple object.

03 Illustrates the creation, use and disposal of more simple objects.

04 Illustrates the creation, use and disposal of an instance of the LinkObject class.

05 Illustrates the use of the LinkObjectSequence class to enumerate through the
elements of a linked list.

06 Illustrates the creation, use and disposal of an instance of the StringDictionary
class.

07 Illustrates the process of enumerating through the elements of a set or dictionary
using the SetSequence class.

08 Illustrates how Dynace handles errors.

09 Illustrates the value of and initialization procedure for the automatic garbage
collector.

10 Illustrates the creation and initialization of a new class.

11 Illustrates the creation of a new method and generic function.

12 Illustrates additional points about methods and generics.

13 Illustrates the independence one instance has from another.

14 Illustrates use of class variables / methods using gNew / gDispose.

15 Illustrates initialization of instance variables with gNew.

16 Another illustration of initialization of instance variables with gNew.

17 Illustrates subclassing.

14 Dynace Manual

20 Illustrates the use of threads.

21 Illustrates the use of the BTree classes.

30 Illustrates the process of getting information from the system.

31 Illustrates how generic functions are first class C objects.

32 Illustrates how to locally cache a method lookup and avoid the runtime cost.

33 Illustrates most of the methods associated with the String class.

34 Illustrates some of the numeric and date formatting abilities.

See the file examples/list for the most up-to-date list of example programs.

Chapter 1: Introduction 15

1.8 Manual Organization

This manual serves as both a user manual and a complete reference manual to the Dynace
system. It makes no assumptions about the users knowledge of object oriented program-
ming. It does, however, assume a working knowledge of the C language.

Chapter 1 (Introduction) covers background material needed to orient a new user.

Chapter 2 (Concepts) covers object oriented concepts both in an abstract sense and as
it relates to the Dynace system. It does this without introducing very much syntax or other
mechanics.

A full understanding of these concepts is crucial to the effective use of the Dynace
system. Even if you have experience with other object oriented languages it is important
to understand these concepts as they are implemented within Dynace. Note, however, that
it is not necessary to know everything before effective use of Dynace can be accomplished.
Full understanding will come with use of the system.

Chapter 3 (Mechanics) introduces the exact syntax and procedures necessary to use the
Dynace system. It does much of this with examples. Although this chapter does not make
explicit reference to the Dynace example programs, they should be reviewed while reading
this chapter.

Chapter 4 (Kernel Reference) provides a detailed reference to all classes, methods,
macros, functions and data types associated with the Dynace kernel.

Chapter 5 (Class Reference) provides a detailed reference to all classes and methods
associated with the class library included with the Dynace system.

The index (located in the back) provides a complete alphabetical listing of all classes,
methods, macros, functions and data types described in chapters 4 and 5.

16 Dynace Manual

1.9 Contact Information

Internet blake@mcbride.name

Discussion There is a Dynace discussion group at
http://groups.yahoo.com/group/Dynace/

1.10 Use, Copyrights & Trademarks

Copyright c© 1996 Blake McBride All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.11 Credits

The Dynace Object Oriented Extension to C, Windows Development System and their
associated documentation were written by Blake McBride (blake@mcbride.name).

Credit and great appreciation is given to several sources for the ideas and inspiration
behind many of Dynace’s facilities as follows.

John Wainwright for the development and sharing of ideas concerning early releases of
his Objects In C (OIC) system. He is an extremely talented individual with many unique
and innovative approaches to software development issues. I am proud to call him my
friend.

Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow for their book “The Art of the
Metaobject Protocol” and their CLOS system.

Adele Goldberg and David Robson for their books on Smalltalk-80 and the Xerox Palo
Alto Research Center for providing access to much powerful and innovative technology.

17

And finally, Dr. Brad Cox for pioneering object oriented extensions to C with his
Objective–C system.

19

2 Concepts

Over time, the methods used in the development of computer software has evolved from a
Goto model, to a Structured Programming model, and finally the Object Oriented model. In
the beginning, the goto model was able to accommodate all the needs of the programmers.
However, as the size of programs became larger and more complex, the goto code began to
look like spaghetti. No one, except perhaps the original author, was able to understand,
and therefore maintain, a complex program which was jumping all over the place. The
solution to this problem was the Structured Programming model.

The Structured Programming model got rid of goto statements and replaced them with
the more structured for and while statements. With this model, the programmer knows
the beginning and ending location of the loop or conditional, as well as what the specific
conditions are for executing the contained code. No more spaghetti.

Structured Programming also stressed the use of subroutines. This allowed blocks of
code to be packaged in a form which could be easier understood as a small, well defined,
unit. It also enabled, to some degree, the ability to create reusable code. It should be noted
that while packaging blocks of code as subroutines greatly increased the programmers ability
to manage large programs, it also comes at a cost. Calling blocks of code as subroutines is
substantially more expensive, in terms of computer cycles, than a goto statement. As time
has progressed, however, it has generally been accepted that the benefits of subroutines far
exceed the costs.

The Structured Programming model worked well for many years. However, as computer
programs became still larger, the programmers ability to manage larger, more complex
projects became increasingly difficult. The ability to use common subroutines across varying
applications was very limited. It became very difficult to manage the relationship between
all the varying data structures and various subroutines.

Three things were needed to solve the problems of the Structured Programming model.
First, there needed to be a way of isolating or packaging related groups of code and data, so
that if a modification had to be made, or a bug fixed, only a specific group of code and data
had to be understood and modified. This would allow a programmer to change a system,
or add new functionality, without first having to understand all the intricacies of the entire
system.

Second, any changes made to the related group of code and data should have minimal
effect on any other code or data. This way, if a programmer changes a module, he shouldn’t
then have to search every place it’s used to see what additional changes had to be made in
order to accommodate the module change.

The third problem is that of maximizing reusability. For years programmers have been
writing the same linked list routines, the same sort routines, and the same hash table
routines over and over. The ability to create general purpose routines, which could be
used in many places, over and over, is of immense value. After the creation of a good
general purpose library, applications development time would be reduced considerably, and
code reliability increased considerably. In addition, any enhancements made to the general
purpose library would have an automatic benefit to all applications which use the library.

20 Dynace Manual

All three of the above issues are addressed in the Object Oriented model. The first
two are addressed by the encapsulation, data abstraction, and loose coupling attributes of
the Object Oriented model. The third issue is addressed by the inheritance and dynamic
binding aspects of the Object Oriented model. All these issues, as well as others, will be
addressed by the remainder of this manual.

Chapter 2: Concepts 21

2.1 Object Oriented

The Object Oriented model of programming is embodied by three fundamental concepts,
a bit of new terminology, and a few new programming mechanisms used to implement
the new concepts. The three fundamental concepts are encapsulation, polymorphism, and
inheritance. These concepts will be introduced first, followed by the mechanisms. The
terminology will be introduced as it is encountered.

2.1.1 Encapsulation

Encapsulation allows the programmer to tightly bind a data structure with the routines
which access it, into an item called an object. Encapsulation reduces the ways in which
outside data or procedures may effect a given object. Outside elements may only effect a
given object by a limited number of well defined methods. Using a limited number of ways
to effect an object causes loose coupling. A well defined method of effecting an object is a
protocol.

A limited example of this idea can be achieved, for example, by creating a unique struc-
ture declaration inside a particular C source file, or module, as opposed to inside an include
file. By doing this, only the functions in the same source file as the structure declaration
may access elements of the structure, since those are the only routines which have any
knowledge of its structure. Anything outside the defining module must call a non-static
function, located within the module, in order to effect the data structure. These non-static
functions would, in effect, comprise the modules protocol. The module would have loose
coupling because the only way outside routines may effect the internal data structure, or
state of the object, is, again, through the non-static functions. External routines have no
access to the static, or local, routines, and have no direct access to the data structure itself.

Further, a very important form of data abstraction is achieved through encapsulation.
Data abstraction refers to the ability to change the structure of data without having to
change any external routines which, indirectly, use the data structure. As in the previ-
ous example, the data structure, as well as the entire implementation of the module may
be changed entirely, and so long as the pre-existing protocol and module functionality re-
mains intact, all other modules which use this module will continue to work without any
modifications. Major implementation details may change and be made more efficient, and
major additions to the module’s functionality may be added, without any effect to external,
pre-existing, code.

As opposed to the above example, the form of encapsulation implemented in most of
the more advanced object oriented models, as well as Dynace, is much tighter. External
routines not only have no access to the elements of the data structure, but also have no
direct access to any of the routines which may effect the data structure! The data structure
and associated routines are tightly packaged into a unique object. The only way to effect
the object is to request the object itself to make any modifications to itself, or perform any
operation. The meaning and methods to achieve this will become increasingly clear as we
progress.

2.1.2 Polymorphism And Overloading

In a normal C program, you may only have one function with any particular name. For
example, if you had a non-static function fun1() in one module, you couldn’t have another

22 Dynace Manual

non-static function fun1() in another module. The two modules wouldn’t link. If the
program did link, and a third module called fun1(), the system wouldn’t know which one
you wanted to execute.

Polymorphism or overloading refers to the ability of the system to determine, based on
context, which particular routine to execute. The context normally refers to the arguments
to the routine. So, for example, in our previous example, you would be able to link two
modules, each with non-local fun1()s. If a third module called fun1() the system would
know which fun1() to execute based on the types of the arguments passed to fun1().
This ability to determine which specific routine to execute, among several possible, is called
dynamic binding.

At first, it may seem unclear what value polymorphism may have. The following example
will show that polymorphism is an extremely valuable tool, when trying to create general
purpose, reusable, software components.

Lets say you had a box object. That is, a data structure representing a box (height and
width), and a group of routines which can create, modify, draw, and destroy a particular
box data structure. Now we want to create a routine to draw an arbitrary number of a
particular box. We would probably write the routine as follows:

void draw_n(box b, int n)

{

while (n-- > 0)

draw(b);

}

If you later wanted to modify draw_n() to work with circles, as well as boxes, you would
normally have to modify draw_n() as follows:

void draw_n2(void *b, int n, int type)

{

if (type == BOX_TYPE)

while (n-- > 0)

draw_box((box) b);

else if (type == CIRCLE_TYPE)

while (n-- > 0)

draw_circle((circle) b);

}

The first problem with the draw_n2() solution is that draw_n() had to be changed to
handle the additional type. The second problem is that the syntax has also been changed.
This means that everywhere draw_n() is called the syntax would have to be adjusted. The
third problem, is that now the programmer has to keep track of which type b really is. All
this work is necessary just to add a little additional functionality. You can imagine what
would be involved in making these types of changes to real, complex, applications.

The facility of polymorphism alleviates the need for any of these changes. As an example,
in Dynace, the code could have originally been written as follows:

Chapter 2: Concepts 23

void draw_n3(object b, int n)

{

while (n-- > 0)

draw(b);

}

If you then created a circle object, with all the appropriate supporting functions, and
passed it to draw_n3() it would work fine! No code changes anywhere! You wouldn’t even
have to recompile draw_n3()! You could later pass draw_n3() a triangle or a rectangle

and again, no code changes, and no re-compilation of draw_n3().

2.1.2.1 Early vs. Late Binding

In the previous example of draw_n3() one should understand that there is a draw() function
defined for the square, one for the circle, one for the triangle, and so on. What’s going
on is that the system is automatically determining which draw() to call based on the type
of b, which is kept automatically.

Some object oriented implementations have what’s called early binding. Early binding
is when the relationship between the function call, and what’s actually called is determined
when the program is being compiled. The advantage of early binding is speed. Since the
determination is being performed at compile time, there is no runtime cost. It is just as
fast as a normal function call.

There are, however, some serious disadvantages of early binding. First of all, in order
for the compiler to make the determination it must know the type of the argument at
compile time. This means that the procedure could only work for one type of object.
This is entirely inadequate for the above example. Using early binding, one would define
a function as in draw_n(). This would allow multiple definitions for draw(), however, it
would only work for a box. Therefore, early binding provides only a partial solution to the
problems polymorphism can solve.

Late binding refers to a system which determines which function to call at runtime.
Late binding requires that the system knows, at runtime, the type of any object. This
information is typically kept automatically by the system, as it is in Dynace. Late binding
has the advantage that it gives all the benefits of polymorphism. Therefore, one could
define a very general purpose draw_n3() type of function within a system that supports
late binding. The only disadvantage normally associated with late binding is speed. The
system must determine which draw() function, for example, to execute at runtime.

Dynace normally uses late binding, and has a caching facility which minimizes the run-
time overhead associated with late binding. Dynace also contains a method for reducing
the runtime overhead to virtually zero. This method may be used in tight loops. Dynace
can also use early binding, however, this is discouraged.

2.1.3 Inheritance

Inheritance allows you to create objects which are like other objects, or group of objects, but
has some differences. Inheritance is an extremely powerful tool. It enables a programmer to

24 Dynace Manual

create a new module by using pre-existing modules. The only parts the programmer has to
write are the parts which make the new module unique. In Dynace, all this can be achieved
without any access to implementation details or source code to the pre-existing modules.

Inheritance operates in a hierarchical form. Thus, if object B inherits from object A, and
a new object C is created which inherits from object B, you will have the following graphical
relationship:

A

|

B

|

C

This diagram shows that object C has all the data and functionality locally defined as
part of object C, as well as all the data and functionality of objects B and A. Object B has
all the data and functionality locally defined as part of object B, as well as all the data
and functionality of object A, but not object C. Object A has only the immediate data and
functionality which are locally defined.

This idea may be extended in a multiple inheritance form pictured below:

A B

\ /

\ /

C

In this example object A has only its locally defined data and functionality. Object B,
also, has only its locally defined data and functionality. Object C, however, contains its
locally defined data and functionality, as well as the data and functionality of both object
A and B.

This idea of single and multiple inheritance may be extended arbitrarily in both depth
and width, whatever makes sense.

Chapter 2: Concepts 25

2.2 Dynace

Dynace is an object oriented extension to the C language. It implements all of the features
discussed in this manual. Dynace is written in the C language, and designed to be portable,
efficient, powerful, and simple to use. Dynace was designed after an in depth study of
Smalltalk–80, the Common Lisp Object System (CLOS), Objective–C, C++, as well as
object oriented principles in general. Dynace was designed with the following goals:

• Implement as much power and flexibility, available in languages such as CLOS and
Smalltalk–80, as possible.

• Create a language which was as simple to use as possible, like Objective–C.

• Create a language which stuck as close as possible to the standard C syntax.

• Create a language which was as efficient as possible, such as C++ and Objective–C.

Dynace succeeds in the satisfaction of these specific goals better than any of the other
languages above.

The remainder of this manual will deal with more specifics aspects of Dynace, although
the vast majority of these concepts are very closely related to most of the above languages.

2.2.1 Object

Dynace adds to the C language only one new data type, the object. An object is a package
consisting of data and the procedures necessary to create, destroy, modify, and otherwise
effect the data. An object always knows what type it is. Dynace operates on objects. An
object can be thought of as a fundamental data type. In fact, object, much like int or long,
is a fundamental type which may be used in declarations. All other elements of Dynace,
such as classes, metaclasses, instances, methods, and generic functions, are regular objects,
just like any other object you may create in an application. In this respect, all objects are
treated exactly the same throughout Dynace. The exact same code which processes the
pre-defined Dynace objects, which allow Dynace to operate, process the user added objects.

Variables containing objects may be declared as follows:

object a, b, c;

In this example three variables, a, b and c, which may refer to objects, have been
defined.

2.2.2 Classes & Instances

In Dynace, each and every object refers to an object, called a class, which defines that
object. One class object may define any number of objects. Each object which is defined
by a particular class object has the same data structure and performs the same functions as
all the other objects which are directly defined by that class object. The only thing which
differentiates one object from another, when they are both defined by the same class object,
is the values contained within their similar data structures.

The objects which are defined by a particular class object are called instance objects of
that class object. Class objects have names. For simplicity sake, we will call a class object
with a name X, X class. An instance object of X class is called an instance of class X. In
general terms, we can speak directly about classes and instances.

26 Dynace Manual

Now that we have some terminology under our belt, I can restate exactly what classes
and instances are, and what their relationship to each other is. One very important thing
to keep in mind, and the main reason all these terminology gyrations were necessary, is that
classes and instances are both objects. There is nothing more special about one than the
other. There is no code in Dynace which treats classes any different from instances.

A class keeps track of the structure of the data located in its instances. A class also keeps
track of the functions the instances are able to perform. Each instance has only a single
class which defines it, and it always knows which class it is. There may be an arbitrary
number of instances of a class, however.

2.2.2.1 Superclasses

Each class may have zero or more superclasses. Classes normally have at least one super-
class, though. The data contained in an instance will be the sum of the data defined directly
in the instance’s class, and the data defined in all the superclasses of the instance’s class.
In addition, the instance will also contain the data defined in it’s superclass’s superclasses.
This continues till there are no more superclasses.

The instance’s functionality follows the same path as it’s data.

If class A is a superclass of class B then, class B is called a subclass of class A.

2.2.2.2 Instance Variables

The data contained within a particular instance are called its instance variables. The values
contained within an instance’s instance variables are unique to that individual instance. Of
course every instance of one class will always have the same instance variable structure,
though. You can think of instance variables as a C structure definition. Each instance of
a particular class contains the same structure. It just contains different data within that
structure.

When dealing with an instance, only the procedures which are part of the instance’s class
are able to access the instance variables. This ensures encapsulation and data abstraction.

2.2.2.3 Class Variables

Each class may also contain data. This data, which is located in the class, are called class
variables. The data in class variables is always unique to a particular class. Class variables
often serve as data which is common among all the instances of the class. With class
variables you can keep track of how many instances of the class there are, or sums of their
instance variables. You can even keep a linked list of a class’s instances if you like.

Like instances variables, class variables may only be accessed by specific procedures
which are bound to the class.

2.2.3 Metaclasses

As was discussed before, all things in Dynace are objects, and are treated the same. If this
is true, you may be wondering why we are discussing classes and instances like they are two
different things. The fact is, they are not! In fact, it so happens, that like instances, classes
are also instances, instances of another class. The classes whose instances are themselves

Chapter 2: Concepts 27

classes, are called metaclasses. And as you might imagine, metaclasses are also instances of
other classes. This is a circular process which goes on without beginning or end.

In this sense Dynace is quite interesting. Every part of Dynace, and all of its func-
tionality, is defined by some other class. Fortunately, though, Dynace hides much of its
complexity. You will rarely, if ever, have to concern yourself with any metaclasses or any
aspects of its recursive design and operation. There is one important thing to remember,
though, every class is an instance of exactly one class (the metaclass) and has zero or more
superclasses.

2.2.4 Methods

As was discussed earlier, the only procedures which may access instance variables are the
procedures associated with the class of the instance. These procedures are called methods.
Methods are used to effect all aspects of an instance’s variables. In fact, methods are the
only thing which can create or destroy instances.

There is one interesting thing about methods, though. Like instance variables, there
is not, normally, a way to evoke a method. Methods, like instance variables, are tightly
bound to the class, and there is no easy, external access to the method. Thus, methods,
like instance variables, are encapsulated and abstracted.

After reading about instance variables and methods being so tightly bound and inacces-
sible, external to the object, one may begin to wonder how one could ever effect an object.
Be patient. The next few sections will wrap up all the ideas.

These features are very important. They are among the key elements which allow the
object oriented model to be such a powerful tool.

2.2.4.1 Instance Methods

Instance methods are methods which typically operate on instance variables. Instance meth-
ods are conceptually located in the class of an instance.

2.2.4.2 Class Methods

Class methods are methods which typically operate on class variables. Class methods are
conceptually located in the class of the class, or the metaclass.

2.2.5 Generic Functions

Given how tightly bound and inaccessible instance (or class) variables and methods are
bound to an object, one might wonder just how anything external to the object can cause
any change in an object. The answer to this is generic functions.

Generic functions act as special C functions which take one or more arguments. What
a generic function does is check the class of the first argument to the generic function, for
a method which has been associated to this generic function. If one is found, it is evoked.
If one is not found, the generic will search all the superclasses of the class of the first
argument. This superclass search will continue until a method is found, or there are no
more superclasses to check. If no method is found an error is signaled.

28 Dynace Manual

Although this search process sounds quite involved and time consuming, it really is not.
Dynace employs a caching scheme, so there is almost never an actual search.

As you can see, this generic function mechanism gives Dynace quite a bit of its power and
flexibility. Through generic functions, most of the dynamic binding and method inheritance
facilities are implemented.

Dynamic binding is achieved, for example, through the fact that class A could have a
method called M1, as can class B. The generic function will evoke the correct method, based
on the class of its first argument. If the first argument to the generic is an instance of class
A then class A’s M1 method will be evoked. Likewise, if the first argument to the generic
is an instance of class B then class B’s M1 method will be evoked. The two methods could
perform entirely different functions.

The method inheritance facility of Dynace are realized by the fact that generic functions
search the superclasses until an appropriate method is found. It will keep searching up the
tree until a class which implements the necessary operation is found.

All the arguments passed to a generic function are passed directly to the appropriate
method, just as if the method was called directly. Therefore, since one implementation of
an M1 method may take a different number of arguments (or different types) as another
M1 method, generic functions take different arguments (or different types) depending on
the method which will eventually be evoked. In addition, the return value of a generic is
whatever the method returns.

The process of evoking a generic function may also be referred to as sending a message
to the object which is the first argument to the generic function.

2.2.5.1 Method Lookup

The order with which generic functions search for an appropriate method is important to
understand. The first place searched is always the class of the object in the first argument
to the generic function. If the method is not found, the first superclass (the one listed
first when the class was created) is searched and then its superclasses. After checking
the entire branch the method is still not found then the next superclass to the first class
will be searched. This process will continue until a method is found or there are no more
superclasses. If no method is found, an error is signaled. The search method, therefore, is
a depth-first search. For example the following class structure:

A B

| |

| |

C D

\ /

\ /

E

would be searched in the following order E--C--A--D--B. Note that the order of C and
D is determined by the order they are listed when class E is created.

Chapter 2: Concepts 29

One important point. If the first argument to the generic function is an instance, the
class of the instance will be searched first. And since instance methods are kept in classes,
an instance method will be evoked. However, if the first argument to the generic function
is a class, the class of the class, or the metaclass, will be searched first. And since class
methods are kept in metaclasses, a class method will be evoked.

So to summarize, if the first argument to a generic function is an instance, then an
instance method will be evoked. Likewise, if the first argument to a generic function is a
class, then a class method will be found.

2.2.6 Memory Management and Garbage Collection

All objects in Dynace are dynamic entities which are allocated from the C heap. When a
new object is created, it is allocated from the heap, but when an object is no longer needed,
it must be returned to the heap, lest we use up all the memory. This can be done in Dynace
explicitly via one of the disposal generics. However, as an application gets larger and more
complex, it becomes more and more difficult to know exactly when an object is no longer
needed. Also, there is often a larger than desired level of complexity added to an application
when trying to keep track of when an object should be disposed of, and being sure it is.

Garbage collection is a system used to free the programmer of most all concern of when
an object should be freed, and making sure it is done. The garbage collector works by
marking all the objects which your program is using, and then going through memory and
freeing any object which is not marked. This process happens automatically, and without
any programmer intervention. The algorithms used in Dynace assure smooth, reliable, and
efficient operation of an application without ever having to worry about freeing any objects.

2.2.7 Threads

In a normal C program when one function calls another the first function waits until the
second function completes before it may continue. The program follows a single line, or
thread, of execution. In a multi-threading language a function may call a second function,
and while the second function executes the first function is able to continue running. Thus
two threads would be running. Either thread could even start more threads.

Threads share the same global variables and opened files just like the functions of a
normal single threading system. Each thread, however, has its own stack space for local
variables and function calls.

The advantage of having multiple threads is that it adds the ability to create applications
which make more efficient use of user and computer CPU time. While a user is updating
information in an application, the same application program could be printing a report.
Any time an application has to perform an operation which the user would normally have
to wait for, such as report printing or other processing of information, it could continue
in a thread while the user is able to perform other data entry/query operations in another
thread.

Dynace supports multiple threads in a semi-preemptive, round robin, priority based
system. Dynace uses the system timer to assure that each thread gets equal access to CPU
time. Semi-preemptive operation is achieved by the fact that Dynace performs automatic
thread switching whenever a generic function is called (if the thread’s time is up). Each

30 Dynace Manual

thread has a priority associated with it. Higher priority threads get first access to CPU
time, while threads of equal priority share CPU time equally.

Dynace supports threads being put on hold, released, priority changed, waiting for other
threads, getting thread return values, and a blocking getkey function. Threads on hold or
otherwise not running require no CPU time.

In addition to Dynace’s thread facility, Dynace also supports true native threads provided
by the underlying system.

2.2.8 Pipes

Once there are multiple threads running there arises a need to coordinate and communicate
among the multiple threads. Pipes are a streams based facility which allows one thread to
pass information to another using a puts/gets type of interface. Named pipes allows one
thread to create a pipe and give it a name. Later, if another thread wants to use the pipe
all it needs to know is the name. It can get access to the pipe object via the name.

Dynace supports named and anonymous pipes with blocking and non-blocking io.

2.2.9 Semaphores

Thread coordination is achieved with semaphores. Semaphores allow the programmer to
control the number of threads which may have simultaneous access to arbitrary system
resources or blocks of code.

Semaphores may be thought of as a global variable which is initialized to zero. When
one thread wants access to a resource it first increments the global variable. Later, if a
different thread wants access to the same resource it first checks the value of the global
variable. If it is greater than zero it means that another thread is utilizing the resource and
that the second thread should wait till the first thread is done. When the first thread is
done with the resource it decrements the global variable. This allows the second thread to
start up and use the resource.

Real semaphores, as opposed to global variables, automate the creation and destruction
of semaphores, the maintenance of the semaphore count, and the holding and automatic
release of threads.

Dynace supports named and anonymous counting semaphores. Dynace semaphores are
implemented in such a fashion so that threads which are waiting for a semaphore require
no CPU time!

2.2.10 Dynace Kernel & Class Library

Dynace consists of two separable parts. One part is called the kernel, and the other is the
class library. The kernel contains all the raw functionality of Dynace. It contains all the
features which allow the creation and functionality of classes, instances, methods, generics,
and garbage collection.

The class library provides a set of general purpose classes which are built on top of the
Dynace kernel. These classes provide basic facilities to create object representations of all
the basic C language data types. It also provides other general use classes to handle object
collection and ordering.

31

The Dynace kernel is entirely functional without the class library.

33

3 Mechanics

This chapter describes the actual steps necessary to use build and use Dynace. First the
steps necessary to configure, compile and link Dynace and Dynace applications is described,
then the steps necessary to use existing classes is described. Once this is understood, the
creation of new classes is described. Finally, Dynace customization and special techniques
are discussed.

3.1 Setup, Configuration & Build Procedures

This section, in concert with the examples, describes the tools and actual steps necessary
to build Dynace and create Dynace application programs. The best method of learning is
to go through the example programs located under the \DYNACE\EXAMPLES directory in the
order in which they appear.

3.1.1 Build Utilities

All the utilities used to build Dynace applications are contained within the Dynace package
and the command line utilities (compiler, linker, etc.) which come with your compiler.
Dynace utilizes special utilities and build procedures designed to intelligently minimize the
need for re-compilation. These procedures are too complex for IDEs which come with the
various compilers. For this reason the IDE environments which come with your compiler
are not used. Instead, the included dmake make utility is used.

Having said that, however, you may still use the IDE for editing and debugging. You
may also be able to find a way of integrating the supplied make files and procedures into
your favorite IDE.

3.1.2 DMAKE Build Setup

This section lists environment variables which must be set for the DMAKE build.

The \DYANCE\BIN directory should be part of the search path used by your system for
executable programs (the PATH environment variable).

The following environment variables should be set as follows (modify as appropriate):

set MAKESTARTUP=c:\dynace\utils\startup.mk

set TMPDIR=c:\tmp

set DOS4G=quiet

set DOS16M=:4M

The DOS4G and DOS16M environment variables are only necessary when running the 32
bit DOS version of dpp.exe which has been compiled with the WATCOM compiler. Win32
or other versions of dpp do not require these variables.

Although not required by the example programs, Microsoft users may find it convenient
to add \DYNACE\INCLUDE and \DYNACE\LIB to your compiler’s include and library search
paths respectively.

Borland users will need to adjust the BORLAND_HOME path setting in the B16.DM and
B32.DM makefiles located in all the example and Dynace source code directories.

34 Dynace Manual

3.1.3 Building Dynace From Scratch

The procedure used to build Dynace from scratch is fully described in
\DYNACE\DOCS\BUILD.txt. See that file for build instructions.

New users will want to read all the files in the docs directory.

3.1.4 Examples Setup

All examples are buildable under all supported environments and build procedures including
16 and 32 bit environments. The only difference is the makefile used.

3.1.5 Example Files

This section documents the files which are contained in each example program.

README This file describes the object of the example. It should be read first.

MAIN.C This file is the complete source code to the example program. It is fully com-
mented and describes all aspects of the current example which are unique.

In addition to the above, the following build/system specific make files are used.

M32.DM DMAKE makefile for Microsoft Visual C 32 bit

MAKEFILE.UNX
GNU MAKE makefile for Unix or Linux systems

MKFILE Makefile for the Plan 9 operating system

M16.DM DMAKE makefile for Microsoft Visual C 16 bit

B16.DM DMAKE makefile for Borland C 16 bit

B32.DM DMAKE makefile for Borland C 32 bit

W32.DM DMAKE makefile for WATCOM C 32 bit

S32.DM DMAKE makefile for Symantec C 32 bit

Once an application is built, the only file needed to run it is MAIN.EXE.

3.1.6 Building The Examples

In order to build with the DMAKE command line utility execute the following command.

dmake -f MAKEFILE.DM

where MAKEFILE.DM is one of the DMAKE makefiles listed above.

Alternatively, you can use the following command to create a debug version of the
example:

dmake -f MAKEFILE.DM DEBUG=1

3.1.7 Debugging

When dpp strategy 1 is selected Dynace uses a small amount of assembler. This is not
true for the default strategy of 2, however, when strategy 1 is used there are a couple of
procedures which, when followed, will easy the debugging process.

Chapter 3: Mechanics 35

First compile your application with debugging information. Then when you wish to
debug the application, set a break point at the beginning of any methods you wish to
debug. You may then step through your program as normal and when you enter a generic,
the system will stop at the methods in which you placed the break points.

Once you are fully into the method, you may access the instances variables through the
“iv” structure pointer and the class variables through the “cv” structure pointer.

3.1.8 Building Your Own Application

The best method of building your own application would be to start with one of the example
programs and proceed from there. This way all the compiler, linker and other options will
be preset. The best examples to start with would be one of the ones which define a new
class. Their makefiles are designed to handle class files in a very convenient and automated
way.

3.1.9 DMAKE

DMAKE is a very powerful, portable and enhanced make utility developed by Dennis
Vadura. It is freely distributable and not owned by Algorithms Corporation or Blake
McBride. Complete documentation for this utility is contained in \DYNACE\DOCS\DMAKE.MAN

36 Dynace Manual

3.2 Using Dynace Classes

Dynace usage can be divided into two categories: class user or class creation. All a class
user has to do to use Dynace classes is include a single file in the source code and call a
function to initialize the system. After these two easy steps the class user has full access
to the entire set of existing classes. A class user need not learn any special syntax or
procedures. Learning to use the existing classes is the same as learning to use any other
library of routines.

A class creator will have to understand all aspects of being a class user first. In addition,
a class creator will have to understand the steps necessary to define classes, methods and
generics. These steps are well defined and simple to use.

This section describes the actual steps necessary to use a pre-existing class. The next
section will discuss the steps necessary to create new classes.

3.2.1 External Naming Conventions

External naming conventions refers to those names that the programmer defines such as a
new class name, an instance variable name or a method or generic name. By contrast, in-
ternal naming conventions refers to those names which are generated by the Dynace prepro-
cessor (dpp). These internal names are often made up from modifications or concatenations
of the external names.

In Dynace, generic function names, by convention only, always begin with a lower case
“g” or “v”, followed by an upper case letter, and then optionally followed by other letters
(of any case), numbers, or underscores. This convention allows a user to immediately know
which functions may be used polymorphically or overloaded.

Generics which begin with “g”, by convention only, have compile time (as well as run-
time) argument checking turned on and often, but not always, have a fixed number of
arguments.

Generics which begin with “v”, by convention only, have compile time argument checking
turned off and are often, but not always, associated with generics which take a variable
number of arguments. Use of generics with argument checking turned off allows them to be
associated with methods with arbitrary argument signatures. It is up to the system and the
programmer to assure that the correct arguments are passed. Dynace provides ample tools
necessary to assure correct arguments at runtime. In fact, the runtime checking facilities
are much more reliable and fool proof than compile time argument checking. The only
disadvantage is that you don’t know a problem exists until you run the system. If, however,
an error is discovered it can be handled many different ways and never crashes the system.

Dynace uses the “g” type of generic as much as possible. However, some methods, such
as indexing into a variable dimension array or printf like functionality, are implemented
as “v” generics.

It’s all right if several methods (associated with different classes) have the same name
because methods are implemented as static C functions. So there is no name conflict.

Chapter 3: Mechanics 37

Classes normally begin with a capital letter. Instance variables, by convention only,
begin with “i” and are followed by an upper case letter. Likewise, class variables, by
convention only, begin with “c” and are followed by an upper case letter.

In the index the notation will specify a generic (minus the normal leading “g” or “v”),
two colons and its associated class. For example ChangeValue::Number specifies a generic
called gChangeValue which is associated with the Number class.

The above naming scheme is used by the Dynace system, however, it is not enforced.
You may use any naming scheme you wish.

3.2.2 Internal Naming Conventions

External naming conventions refers to those names that the programmer defines such as a
new class name, an instance variable name or a method or generic name. By contrast, in-
ternal naming conventions refers to those names which are generated by the Dynace prepro-
cessor (dpp). These internal names are often made up from modifications or concatenations
of the external names.

The following table lists the internal name structure used by Dynace. The associated
source external names for example purposes are the class String and the generic gNew.

String a macro which evaluates to the class object but also automatically initializes
the class if it hasn’t already been initialized

String_c the actual variable which contains the class object (NULL if the class hasn’t been
initialized yet

String_t a typedef defining a String class (always object), used for documentation pur-
poses only

String_cv

pointer to the actual locally defined class variable structure

String_cv_t

a typedef which defines the locally defined class variable structure

String_iv_t

a typedef which defines the locally defined instance variable structure

String_initialize

the name of the class initialization function generated by dpp

gNew_t a typedef defining a pointer to a function with the return type and argument
signature of the generic

gNew_g a Dynace object representing the generic

String_im_gNew

default instance method name for methods with argument checking turned on
(imeth)

String_cm_gNew

default class method name for methods with argument checking turned on
(cmeth)

38 Dynace Manual

String_ivm_gNew

default instance method name for methods with argument checking turned off
(ivmeth)

String_cvm_gNew

default class method name for methods with argument checking turned off
(cvmeth)

3.2.3 Class Hierarchy

The only class in Dynace which has no superclasses is called Object. All classes in Dy-
nace eventually inherit from the class Object. The Object class defines those features
that are common to all objects. The class Behavior inherits from Object and defines the
functionality common to classes and metaclasses. The class Class inherits from Behavior,
and describes the functionality particular to all classes. The class MetaClass also inherits
from Behavior, and defines the operations particular to metaclasses. There is a class called
Dynace which inherits from Object, and is used to effect various aspects of the Dynace ker-
nel. There are also classes called Method and GenericFunction, which both inherit from
Object, and perform the expected functions.

The above class hierarchy can be depicted as follows:

Object

Behavior

Class

MetaClass

Dynace

Method

GenericFunction

These classes comprise the entire Dynace kernel. Other facilities of Dynace, such as
threads, pipes, dictionaries, are supplied as Dynace classes. Although an in depth under-
standing of each of the above classes is unnecessary, it is important to fully understand
the relationship between the inheritance of the above classes, and the indentation of the
diagram.

3.2.4 Example Code

The following example illustrates a complete program which uses Dynace. Each line is
explained in the following sub-sections.

Chapter 3: Mechanics 39

#include "generics.h"

main(int argc, char *argv[])

{

/* declare some variables which will hold objects */

object name, pi, age;

/* initialize the Dynace kernel and class library */

InitDynace(&argc);

/* optional: start automatic garbage collector */

gSetMemoryBufferArea(Dynace, 40000L);

/* set name to an instance of the String class */

name = gNewWithStr(String, "Tom Swift");

/* set pi to an instance of the DoubleFloat class */

pi = gNewWithDouble(DoubleFloat, 3.14159265358979);

/* set age to an instance of the ShortInteger class */

age = gNewWithInt(ShortInteger, 32);

/* tell some objects to print themselves */

gPrint(name, stdoutStream);

gPrint(age, stdoutStream);

/* change the age */

gChangeShortValue(age, 33);

/* manually dispose of the objects (not necessary if the

garbage collector is enabled) */

gDispose(name);

gDispose(pi);

gDispose(age);

}

3.2.5 Include File

Any source module which uses any Dynace objects must include generics.h. This may be
accomplished with the following line:

#include "generics.h"

40 Dynace Manual

3.2.6 Declarations

All objects (classes, instances, methods...) in Dynace are objects. The declaration used in
Dynace is object. Therefore, if you wanted to declare three objects in Dynace you could
use the following:

object a, b, c;

This declaration may be used anywhere you can define any other type of variable in the
C language.

3.2.7 Initializing Dynace

The first thing which must be done prior to using any classes in Dynace is to initialize the
Dynace kernel and system classes.

This initialization must be called from the main() function. The initialization func-
tion must also be passed the address of the argc argument to the main() function. This
information is required by the Dynace garbage collector.

Use of the following is required to initialize the Dynace system:

InitDynace(&argc);

3.2.8 Generic Functions

In Dynace, generic function names, by convention only, always begin with a lower case “g”
or “v”, followed by an upper case letter, and then optionally followed by other letters (of
any case), numbers, or underscores. This convention allows a user to immediately know
which functions may be used polymorphically or overloaded.

Generic functions are used like any other C language function. However, generic func-
tions always have at least one argument. This first argument, is the object which will be
performing the requested method. Any remaining arguments will be passed to the appro-
priate method.

When using variable argument generics (those beginning with “v”) the number and types
of arguments may be different from one call to a particular generic function call to another.
This is because different methods, with different argument requirements, may be called.

3.2.9 Creating Objects

By convention, the generic function used to create new objects is called gNew() or vNew().
The first argument to either should be the class of the new object (or instance) to be
created. Any, possible, remaining arguments (in the case of vNew) will be the ones required
by a particular class.

If compile time argument checking is used then the gNew function will possibly be re-
named to avoid argument conflicts.

The following are examples of some instances being created:

Chapter 3: Mechanics 41

object name, pi, age;

name = gNewWithStr(String, "Tom Swift");

pi = gNewWithDouble(DoubleFloat, 3.14159265358979);

age = gNewWithInt(ShortInteger, 32);

There are a number of interesting things about this example. First of all, the syntax is
normal C language syntax. Second, the three objects created, each of a different type, had
the same declaration. Note also, the standard naming of the generic function gNewXXXX().

3.2.10 Using Objects

Once an object is created it may be used as arguments to generic functions. For example:

object myInt;

myInt = gNewWithInt(ShortInteger, 42);

gPrint(myInt, stdoutStream);

gChangeShortValue(myInt, 68);

gPrint(myInt, stdoutStream);

When the gPrint() generic function is called, as in the above example, Dynace checks
the class of myInt, and finds that it is of type ShortInteger. It then finds a method which
is associated with the gPrint() generic function / ShortInteger class combination, and
evokes it. This association is defined by the person who wrote the ShortInteger class.

3.2.11 Disposing of Objects

All objects in Dynace are allocated from the heap. Therefore, when an object is no longer
needed, it must be returned to the heap. If this is not done you would eventually run out
of heap space. Dynace has two methods of accomplishing this task, disposal generics and
the garbage collector.

3.2.11.1 Disposal Generics

One method Dynace uses to release unused objects is through an explicit call to a disposal
generic. There are two common disposal generics. One is called gDispose and the other is
gDeepDispose.

gDispose is typically used to dispose of a single object and any associated allocated
space it may reference.

The gDeepDispose generic, in addition to performing the same functions as the gDispose
generic, is typically used to dispose of whole group of related objects at the same time.
This method will typically recursively call the gDeepDispose generic on all objects being
referenced within the object being disposed.

Both gDispose and gDeepDispose always return NULL. This is done in order to allow
the disposal generic to null out the variable which holds the object in the same expression
which disposes of it.

The following is an example of the gDispose() generic:

42 Dynace Manual

object age;

age = gNewWithInt(ShortInteger, 32);

gPrint(age, stdoutStream);

age = gDispose(age);

3.2.11.2 Garbage Collection

The second, and preferred, method Dynace has for disposing of objects is through a garbage
collector. The garbage collector is an integral part of Dynace which constantly monitors
the applications memory use. Whenever certain conditions arise, such as low memory
conditions, the garbage collector automatically, and transparently kicks in. The garbage
collector marks all objects which are directly or indirectly accessible via the automatic
variables in the program. It also marks any objects which are referenced by global or
static variables which have been registered with Dynace. Dynace also automatically marks
all classes, methods, and generic function objects. After this marking phase, the Dynace
garbage collector goes through all objects and frees those that are not marked.

The simple explanation is that by using the Dynace garbage collector, you never have to
worry about freeing any objects which are no longer needed. The garbage collection process
requires no additional coding on the developers part. It runs entirely automatically and
transparently to the application program.

A few things to remember, though, the Dynace garbage collector may be used with the
gDispose generic function. The garbage collector is off by default, and must be turned
on (as shown below). Only those objects which are referenced by automatic variables,
and those globals and statics which have been registered with the garbage collector (via the
gRegisterMemory generic), will be marked. Therefore, any objects which are only referenced
by unregistered globals or statics will be disposed of by the garbage collector.

Note that under Win32, Dynace has special code and can automatically detect and mark
unregistered globals or statics. Therefore manual registration of these memory locations is
not needed under Win32.

The garbage collector may be turned on with the following line (after the Dynace system
has been initialized):

gSetMemoryBufferArea(Dynace, 40000L);

Dynace offers an alternative garbage collection scheme which has important tradeoffs.
See the sub-section on the Boehm Garbage Collector under the Dynace Customization &
Special Techniques section.

3.2.12 Generics Files

In any given program, only a single source file should contain all the generic functions used
throughout the entire application. This includes the generics used by the Dynace kernel, the
class library, and any application specific generics. The file used to define all the generics is
called generics.c. There is also a file called generics.h which provides for the external
declarations for all the classes and generics. Both of these files are automatically generated
by a program called dpp.

Chapter 3: Mechanics 43

See the section documenting the dpp program for further details.

3.2.13 Compiling & Linking

This section describes the necessary tools and steps necessary to create an application which
uses the Dynace system.

3.2.13.1 Files

In order to compile and link programs which use the Dynace kernel and class library you
will need the following files:

dynl.h This file is included with the Dynace system and located in the include directory.

generics.h

If your application creates its own classes, you will need a custom generics.h

file located in your application directory. This file is automatically generated
by the dpp program. Otherwise, the generics.h file included with Dynace may
be used.

generics.c

This is a file generated by dpp from the application specific generics.h file.
It should be created and kept in the applications source directory. It is only
needed if your application creates its own classes.

dpp.exe This program is used to generate the generics.c and generics.h files in the
applications source directory. dpp.exe should be kept somewhere in your nor-
mal path for executable programs.

*.lib The Dynace library files are located under the lib directory. These libraries
are specific to each supported compiler and whether they are for 16 or 32 bit
versions of the compiler. For 16 bit compilers, only the large memory model is
supported.

3.2.13.2 Compiling & Linking

The best way to compile and link your application is to start with one of the makefiles
included with the example programs included with Dynace. There are specific make files
for each supported compiler.

3.2.14 Learning Dynace Classes

Once the basics of using Dynace objects, and the mechanics of creating a program are
understood, a study of the Dynace library, including what facilities it has to offer, and how
to use it, are strongly recommended. Nothing will get you up and running with the system
faster. The true value of Dynace cannot be appreciated until a full understanding of the
Dynace class library, and what facilities it has to offer, as well as the understanding of the
simplicity and power offered by creating your own classes has been achieved.

44 Dynace Manual

3.3 Defining Dynace Classes

This section describes the syntax and procedure necessary to create Dynace classes. It
is recommended that all the information in the previous sections be understood prior to
continuing in this section. It is also recommended that some experience with the class
library be accomplished.

Each new class in Dynace is defined in its own unique source file. Multiple classes should
never be defined in a single source file. However, it is possible to define a large class by
several source files. This process is illustrated in one of the example programs.

Dynace uses the static function ability of the C language to encapsulate the methods.
This is why it is best to define a class in a single source file.

Classes are defined in class definition files which have a “.d” file extension instead of the
normal “.c” file extension. These class definition files may contain normal C code as well
as the additional syntax elements described in the next subsection.

When building the application, class definition files are processed by the Dynace pre-
processor (dpp) which produces corresponding C source files (with a “.c” file extension)
which may be compiled with your normal C compiler. At the same time dpp also performs
argument checking by comparing arguments to methods and their associated generics. dpp
also uses this information to produce the appropriate generic files.

The following sub-sections describe the exact syntax necessary to define your own Dynace
classes.

Chapter 3: Mechanics 45

3.3.1 Class Definition File Syntax

Class definition files may contain normal C code without restriction. In addition, the
following syntax elements may be used to define a class, methods and generics.

Legend:

Items between [] are optional

... indicates any number (including 0) of the preceding

| indicates a choice

Identifiers in caps should be replaced by the appropriate name

Lines beginning with // are comments

Lower case identifiers and other symbols are typed as-is

// Class definition

[CLASS-SCOPE] defclass CLASS-NAME

[[:] SUPERCLASS-NAME [[,] SUPERCLASS-NAME]...]

[{

[[instance:]

INSTANCE-VARIABLE-DECLARATIONS]

[class:

CLASS-VARIABLE-DECLARATIONS]

[init:

SPECIAL-CLASS-INITIALIZATION-FUNCTION-NAME ;]

}];

CLASS-SCOPE = public | private

VARIABLE-DECLARATION = [TYPE] variable ;

TYPE defaults to object

46 Dynace Manual

// Public method definition

[public] METHOD-TYPE [RETURN-TYPE] GENERIC [,GENERIC]...

[,<GENERIC>]... [: METHOD-NAME] (ARGUMENT-LIST)

{

METHOD-BODY

}

METHOD-TYPE = imeth | cmeth | ivmeth | cvmeth

RETURN-TYPE defaults to object

Undeclared method names default to CLASS_Xm_GENERIC

ARGUMENT-LIST - types default to object,

first arg (object self) defaults

// Private method definition

private METHOD-TYPE [RETURN-TYPE] METHOD-NAME

(ARGUMENT-LIST)

{

METHOD-BODY

}

METHOD-TYPE = imeth | cmeth | ivmeth | cvmeth

RETURN-TYPE defaults to object

ARGUMENT-LIST - types default to object,

first arg (object self) defaults

// Super syntax

GENERIC(super [ARG] [, ARGN]...)

// Comments

/* COMMENT */

Chapter 3: Mechanics 47

// COMMENT-TO-END-OF-LINE

3.3.1.1 Class Definition

This syntax element allows for a central location for all elements associated with the new
class. The new class’s name, an optional list of superclasses, instance variables, class vari-
ables, and class initialization function are all defined by this structure.

All variables default to type object if not otherwise declared.

Since most elements of a class definition are optional, the minimum that is requires is
as follows:

defclass MyClass;

This defines a class called MyClass which has no specific class or instance variables and
has a single superclass (Object).

The next example defines a class which is a subclass of SomeClass.

defclass MyClass : SomeClass;

The next example defines a class which is a subclass of SomeClass and SomeOtherClass.

defclass MyClass : SomeClass, SomeOtherClass;

The next example defines a class which has a couple of specific instance variables asso-
ciated with it. This class defaults to the single Object superclass.

defclass MyClass {

int iAge;

object iName;

};

The next example is the same as the previous except that since variables default to the
object type, this type declaration may be omitted.

defclass MyClass {

int iAge;

iName;

};

The next example adds to the previous example by adding a class variable. Note that
since there is no type explicitly declared it defaults to object.

defclass MyClass {

int iAge;

iName;

class:

cPeople;

};

The next example adds to the previous example with the addition of a specific superclass
(as shown above).

48 Dynace Manual

defclass MyClass : SomeClass {

int iAge;

iName;

class:

cPeople;

};

The next example adds to the previous example with the addition of a class initialization
function. This feature is rarely needed but allows a specific function to be executed by
Dynace when the class is being initialized. This is typically used to initialize class variables.

defclass MyClass : SomeClass {

int iAge;

iName;

class:

cPeople;

init: my_init_function;

};

The next example illustrates the fact that the various sections may be in any order,
however, if the instance section is not first, it must be explicitly declared.

defclass MyClass : SomeClass {

init: my_init_function;

class:

cPeople;

instance:

int iAge;

iName;

};

The default scope of class definitions is private. Therefore the previous example could
just as well have been written as follows.

private defclass MyClass : SomeClass {

init: my_init_function;

class:

cPeople;

instance:

int iAge;

iName;

};

Use of the private keyword is strongly discouraged. It was only added to complement
the public scoping which is also strongly discouraged but needed in certain circumstances.

The public defclass declaration is used to cause the Dynace preprocessor (dpp) to
create additional files which contain the class and instance variable structures. This is the
same as the -iv and -cv dpp options. See the dpp section for further explanation of this
feature.

Chapter 3: Mechanics 49

3.3.1.2 Public Method Definition

Public methods are only accessible through generic functions. The body of public methods
is identical with normal C functions. The main difference between a C function definition
and a public method is that a method of associating a method with generics and determining
the method type is required.

The following table lists the available method types:

imeth This indicates an instance method with compile time argument checking en-
abled. Use of this option requires that all methods associated with a specific
generic function all have the exact same argument signature.

cmeth This indicates a class method with compile time argument checking enabled.
Use of this option requires that all methods associated with a specific generic
function all have the exact same argument signature.

ivmeth This indicates an instance method with compile time argument checking turned
off. Use of this feature allows methods with totally arbitrary argument signa-
tures to be associated with the same generic function.

cvmeth This indicates a class method with compile time argument checking turned off.
Use of this feature allows methods with totally arbitrary argument signatures
to be associated with the same generic function.

The following example illustrates a minimum method declaration. Note that a generic
name is specified instead of the method’s name. This is done since all external access to
a method is through its associated generic, the actual method name is rarely important.
Dynace will default a method’s name to be the associated generic name prefixed with the
class name, a code indicating the method type and the generic name. Each part is separated
with an underscore. So in the following example the actual method name will be MyClass_
im_gMyGeneric. You can, however, explicitly name a generic. This will be shown in other
examples.

public imeth object gMyGeneric(object self)

{

return self;

}

Since all methods take object self as their first argument, Dynace defaults this infor-
mation. Therefore, the above example may also be written as follows.

public imeth object gMyGeneric()

{

return self;

}

If the method took an additional arguments, the first argument may, optionally, be
skipped. For example:

public imeth object gSomeGeneric(object self, int age, char *name)

may also be written as:

50 Dynace Manual

public imeth object gSomeGeneric(int age, char *name)

In addition, all argument types default to object, therefore, any arguments which are
of type object may exclude their type declaration. For example:

public imeth object gSomeGeneric(object self, int age, object name)

may also be written as:

public imeth object gSomeGeneric(int age, name)

Also, since public and the return type of object are Dynace’s defaults the first example
may also be written as follows. Explicit use of the public declaration is provided in order
to be consistent with the private declaration and not especially recommended.

imeth gMyGeneric()

{

return self;

}

It is often convenient to associate one method with several generics. This can be done
as follows.

imeth gMyGeneric, gGeneric2, gGeneric3 ()

{

return self;

}

Explicit method naming is sometimes needed if it is to be directly evoked within the
same source file. This can be done as follows.

imeth gMyGeneric : SomeMethod ()

{

return self;

}

Explicit method naming can also be used with multiple generic association as follows.

imeth gMyGeneric, gAnotherGeneric : SomeMethod ()

{

return self;

}

The following example is a duplicate of the previous example, except that it returns an
char *.

imeth char * gMyGeneric, gAnotherGeneric : SomeMethod ()

{

return "String";

}

The following example illustrates the syntax used to associate a single method with
generics which have argument checking turned on (imeth’s) and generics which have them

Chapter 3: Mechanics 51

turned off (ivmeth’s). This syntax is only recognized by the dpp program when its -X option
is enabled, otherwise this special syntax is just ignored.

imeth gMyGeneric, <vAnotherGeneric> ()

{

return "String";

}

To use this feature the method must be declared as an imeth or cmeth. You then
surround the generic name which is to be treated as an ivmeth or cvmeth in angled brackets
as shown. All the previously described syntactical elements may be used without restriction
when this option is used. And again, generic names in angled brackets will be ignored by
the system unless the -X dpp option is used.

3.3.1.3 Private Method Definition

Private methods are methods who are not associated with any generic and are therefore only
available for use within the file they are declared it - similar to static functions. However,
like public methods, private methods always take object self as their first argument.

Private methods are mainly used as a way of creating method like functionality in cases
where they are only used internally and no dynamic binding is needed. They are more
efficient.

The following declares a typical private method. Unlike public methods, private method
declarations name the method and have no generics associated with them. Once declared,
private methods may be used like regular functions.

private imeth object MyMethod(object self)

{

return self;

}

Like public methods, private methods default their return type and argument list. There-
fore, the above declaration may also be written as follows.

private imeth MyMethod()

{

return self;

}

3.3.1.4 Super Messages

Super messages are a way of evoking methods associated with a superclass of an object, as
opposed to the method which is directly associated with the class. Typically, this is used to
allow a method to wrap functionality around functionality already provided by a superclass.
It is often used in the creation of new instances.

Typically, if you wanted to evoke the functionality associated with an instance, you
would use the following syntax.

gSomeGeneric(someInstance, someArg);

52 Dynace Manual

However, if you wanted to instead evoke the method associated with the superclass if
your instance, you would use the following syntax.

gSomeGeneric(super someInstance, someArg);

As a more complete example, lets say you have a class containing an instance variable
which you wish to be initialized to some value whenever a new instance is created. The
following illustrates the point.

defclass MyClass {

iSomeObject;

};

private imeth init()

{

iSomeObject = gNew(String);

return self;

}

cmeth gNew()

{

object obj = gNew(super self); // line 1

return init(obj);

}

In this example the instance variable is being initialized to a null string object for every
new instance created. Remember that since this is a class method, self will be a class
object. Since only one of the kernel classes knows how to actually create a new (blank)
object, the gNew method must evoke the one above it in order to finally get to the one
which can actually create the bare new object. Once the new object is obtained, it may be
initialized and returned.

Note that you couldn’t have just called gNew(self) because that would call the same
method you’re in to be called recursively and indefinitely.

In addition, since sending the super message to self is the most common use of super
the self is actually optional. Therefore, line 1 above could be written as follows:

object obj = gNew(super); // line 1

3.3.1.5 Comments

In addition to normal C comments the // is used to signal comments to the end of the line.

3.3.2 Example Code

The following example illustrates a complete program which defines a new Dynace class.
Each line is explained in the following sub-sections.

Chapter 3: Mechanics 53

defclass MyNewClass {

char *iName;

int iAge;

iSomeOtherObject;

class:

long cTotalInstances;

int cAverageAge;

};

private imeth init(char *name, int age)

{

iName = (char *) malloc(strlen(name)+1);

strcpy(iName, name);

iAge = age;

return self;

}

cmeth gNewInstance(char *name, int age)

{

return init(gNew(super), name, age);

}

imeth object gDispose()

{

free(iName);

return gDispose(super);

}

imeth object gDeepDispose()

{

free(iName);

if (iSomeOtherObject)

gDeepDispose(iSomeOtherObject);

return gDispose(super);

}

imeth gSetObject(obj)

{

iSomeOtherObject = obj;

return self;

}

imeth gPrint(FILE *fp)

{

fprintf(fp, "%s is %d years old\n", iName, iAge);

return self;

}

54 Dynace Manual

3.3.3 Class Definition

The first step in defining a new class would be to create a .d file with a defclass specifi-
cation. This is discussed in detail in the section which describes the defclasss syntax.

Note the naming convention used. Class names begin with an upper case letter and
are followed with upper and lower case letters. Instance variables start with an “i” and
are followed with an upper case letter. Likewise, class variables start with a “c” and are
followed with an upper case letter.

This naming convention is just that – a convention. Dynace does not enforce or nec-
essarily encourage this convention. However, since Dynace allows direct access to instance
and class variables from within methods, some naming convention is desirable, otherwise it
would be difficult to distinguish instance variables from locally declared variables.

3.3.4 Defining Methods

Once the defclass specification is given, the methods may be declared. The syntax for
this, as well as several examples are discussed in the section which described method syntax.

It is important to understand that self will always refer to the instance object which
called the generic, if it is an instance method. And self will always refer to the class object
if this is a class method.

The naming convention used is that generics with fixed number and type of arguments
in which compile time argument checking is enabled start with “g” and are followed be an
upper case letter.

Generics without compile time argument checking enabled may be passed arbitrary ar-
guments. These generics start with “v” and are followed be an upper case letter.

This naming convention is not enforced or necessarily encourage by Dynace. However, it
is intended to help a programmer distinguish normal C functions from various points where
Dynamic binding is occurring.

3.3.4.1 Accessing Instance And Class Variables

An object’s instance and class variables may only be accessed from within a routine located
in the source file which defines the class. There are several ways available to access these
variables. This subsection will discuss all the ways from the most frequently used methods
to the least.

The most frequent use of instance variables is from within public or private instance (not
class) methods. These methods may directly access the variables as they would access any
local variable, by just using them by name.

Class variables are also directly accessible by name in all methods or regular C functions
within the module.

There are four places where instance variable access gets a little tricky. Dynace, however,
provides mechanisms to conveniently access instance variables in all circumstances.

The first difficulty is when attempting to access a newly created instance’s instance
variables from within a class method which had just created the new object. This is a

Chapter 3: Mechanics 55

common problem within New generics. There are two solutions to this problem. One
solution is clean but a little less efficient than a more dirty solution. Understanding of
the dirty solution, however, is helpful when debugging code (regardless of which solution is
used).

The clean solution is depicted in the following example.

private imeth init(char *name, int age)

{

iName = (char *) malloc(strlen(name)+1);

strcpy(iName, name);

iAge = age;

return self;

}

cmeth gNewInstance(char *name, int age)

{

return init(gNew(super), name, age);

}

In the above example gNewInstance first calls gNew to create a new instance. It then
passes the new instance along with the initialization arguments to an instance method
(imeth) because instance methods can access the new instance’s instance variables. Since
the init method returns the object passed, gNewInstance can simply return it.

One interesting point about the above example is that private methods, unlike public
ones, must either be defined or declared prior to use.

With the dirty solution it is important to understand that Dynace provides all instance
variable access through a structure pointed to by a locally declared pointer named iv

(which stands for “instance variables”). In the case of instance methods, this procedure is
automatically handled by the Dynace preprocessor. However, it must be done explicitly,
when needed, in class methods.

Dynace also declares a typedef which is a structure mirroring the instance variable
definition contained with the defclass statement. Finally, Dynace provides macros for
obtaining a pointer to the instance variables associated with a given object.

The following example depicts the solution to the above mentioned problem.

56 Dynace Manual

cmeth gNewInstance(char *name, int age)

{

object obj; /* line 1 */

ivType *iv; /* line 2 */

obj = gNew(super); /* line 3 */

iv = ivPtr(obj); /* line 4 */

iName = (char *) malloc(strlen(name)+1);

strcpy(iName, name);

iAge = age;

return obj;

}

This example demonstrates all the above procedures. Line 1 declares a variable which
will hold the new instance object to be created. Line 2 declares the iv variable which
Dynace needs in order to access the object’s instance variables.

Line 3 calls the super gNew in order to create a new and uninitialized instance object
and assign it to obj. Line 4 gives Dynace access to the instance variables associated with
the obj variable.

After line 4, the code may directly access the instance variables as would be done in an
instance method.

The second problem associated with accessing instance variables has to do with normal
C functions contained within the same module. Since C functions don’t necessarily take
the self argument, it is impossible for Dynace to know how to access the instance variables.
However, a simple method of achieving this is provided.

As stated above, Dynace uses the iv variable in order to access instance variables,
therefore, all that has to be done is to pass the iv pointer to the C function. For example:

static void MyFunc(ivType *iv, int age) /* Line 1 */

{

iAge = age; /* Line 2 */

}

imeth gChange(int age, char *name)

{

MyFunc(iv, age); /* Line 3 */

iName = name;

return self;

}

In the above example, a normal C function is given access to the instance variables by
passing it the noted iv pointer. Since Dynace automatically gives instance methods access
to an iv pointer, it may be simply passed to the function (as shown in line 3).

Line 1 shows how the iv variable would be declared. It doesn’t necessarily have to be
the first argument. Line 2 shows how the instance variables are now directly accessible
within the function.

Chapter 3: Mechanics 57

The third problem associated with accessing instance variables has to do with accessing
the instance variables of more than one object within the same module at the same time.
The problem can be resolved (in a relatively inefficient, but clean manner) with instance
variable accessing methods. However, Dynace provide a very efficient way to accommodate
this situation.

Since Dynace gives a method of accessing the instance variable structure pointer associ-
ated with an object (ivPtr macro), these pointers may then be used as normal C structures.
For example:

imeth gCopy()

{

object obj2; /* Line 1 */

ivType iv2; /* Line 2 */

obj2 = gNew(super MyClass); /* Line 3 */

iv2 = ivPtr(obj2); /* Line 4 */

iv2->iAge = iAge; /* Line 5 */

return obj2; /* Line 6 */

}

The above example defines an instance method which produces a new instance of the
class and initializes it to have the same age as the instance object passed. Line 1 declares
the variable which will hold the new object being created.

Line 2 declares a pointer which will point to the instance variables contained within
obj2. Note that you couldn’t use the name iv because that would conflict with Dynace’s
use of that variable relative to the implied self argument.

Line 3 creates a new blank instance of the class. Line 4 gives access to the instance
variables contained within the new object.

Line 5 is the neat part. The left side of the assignment references an instance variable
associated with obj2 and the right side references an instance variable associates with the
object passed (self). This line could have also been written as follows:

iv2->iAge = iv->iAge;

since Dynace automatically creates the iv structure pointer and associates it with self.
The key point here is that all direct instance variable usage is always relative to the iv

variable.

The final difficulty is associated with instance variable access has to do with the C
preprocessor. The following example will cause problems.

#define ASSIGN iAge = age

imeth gChangeAge(int age)

{

ASSIGN;

return self;

}

58 Dynace Manual

The above example will cause problems because Dynace will scan the method and de-
termine that since it can’t find any instance variable names referenced in the method, there
is no need to gain access to them. Therefore, Dynace will not generate the iv variable for
this method and you will receive a compile error.

This problem may be corrected by explicitly requesting Dynace to give access to the
instance variables by use of the accessIVs macro. The following example corrects the
previous example as discussed.

#define ASSIGN iAge = age

imeth gChangeAge(int age)

{

accessIVs;

ASSIGN;

return self;

}

This macro must be placed in the variable declaration portion of the instance method’s
definition. The accessIVs macro actually declares and initializes a variable called iv from
the self argument to the method. This iv variable will point to a normal C language
structure which will look like the structure you defined when defining the instance variables.

3.3.4.2 Determining the Class of an Object

There is a macro in Dynace which will return the class of any object. This macro is called
ClassOf. The following example illustrates its usage:

object o1, o2;

o1 = ClassOf(o2);

Now o1 will contain the class of o2.

3.3.4.3 Sending Super Messages

The process of evoking a method which is located in a superclass is sometimes necessary
when executing a method within a particular class. Normally, when a generic function is
evoked, the search for an applicable method starts at the class of the object which is the first
argument to the generic. If no method is found, the superclasses are then searched. When
sending a super message, the superclasses of the object are searched first. If no method is
found then the superclasses of the superclasses are searched, and so on. The class of the
object is bypassed.

An example will clarify this concept. Lets say you have a class defined as follows:

Chapter 3: Mechanics 59

defclass MyClass {

int iA;

};

imeth gPrint()

{

printf("iA = %d\n", iA);

return self;

}

This is a simple class which just holds the integer iA, and has a method to print it. Now
let’s define a second class which inherits from the above class. The second class will look
as follows:

defclass AnotherClass : MyClass {

int iB;

};

imeth gPrint()

{

gPrint(super self);

printf("iB = %d\n", iB);

return self;

}

Not that both class’s print methods share the same generic function, gPrint.

Since the second class inherits from the first class, instances of the second class will
actually contain both the integer iB, and also the integer iA, defined in the first class.
Since the second class’s print method has no direct access to the iA instance variable,
because of strict encapsulation, there is no way for it to print the iA instance variable’s
value. When the self argument to the gPrint generic function is of the second class’s
type, the second class’s print method would always be evoked. There needs to be a way to
evoke the print method associated with the first class from the print method in the second
class.

In the second class’s print method, the super syntax shown would accomplish the desired
effect. This syntax works like evoking the gPrint method on an instance of the current
class, except that it starts its search with the superclasses.

The end result of all this is that when a gPrint generic function is called with an
instance of the second class, the second class’s print method will be evoked. Then the
second class’s print method will evoke the first class’s print method, printing the instance
variable iA. When the first class’s print method is through, it returns to the second class’s
print method, which called it. After that, the second class’s print method prints the iB

instance variable, and returns.

This super message concept is very important to understand. It is one of the key features
which allows you to take a pre-existing class and modify its behavior to suit your needs
without having to re-write the pre-existing code.

60 Dynace Manual

3.3.5 Class Initialization

During startup, when your application executes InitDynace, Dynace initializes the Dynace
kernel, the generic objects and the Dynace kernel classes. The remaining classes get ini-
tialized when they are used. If you use a class which is a subclass of other classes, Dynace
automatically initializes the parent classes first.

Explicit class initialization may be accomplished by simply referencing the class. The
following example, which should exist inside a function, explicitly initializes the MyClass

class.

MyClass;

3.3.5.1 Class Initialization Function

Sometimes it is desirable to perform some additional procedures at the time the class is
initialized. For this case it is possible to have Dynace evoke class specific initialization
functions declared by the programmer. Most often this feature is used to initialize class
variables.

A class specific initialization should be a static function which take no arguments and
returns no results. This function will get automatically evoked by Dynace immediately after
the creation of the class it’s associated with. Therefore, it will have full access to all the
class variables.

In order to inform Dynace of the existence of a class initialization function, it should be
declared in the defclass statement as described in the defclass specification described in
a previous section.

3.3.5.2 An Example

The following code fragment depicts a class initialization function being used.

static void class_init(void);

defclass MyClass {

int iVar;

class:

object cVar;

init: class_init;

};

static void class_init()

{

cVar = gNew(Set);

}

3.3.6 What Gets Linked

Regardless of what classes exist in a particular library or what classes are mentioned in the
generics.h or generics.c files Dynace is designed in such a fashion so that at link time
only the classes which your application actually uses will get linked in.

Chapter 3: Mechanics 61

3.3.7 The gNew Class Method

Most classes will have an instance creation method. This is the method which is responsible
for creating and initializing instances of the new class, also called the constructor. If no
local instance variable initializing is necessary, then no constructor method need be defined.
One of the superclasses, or the Dynace kernel will automatically create and initialize the
instance. In the absence of any explicitly initialized instance variables in a new instance,
the Dynace kernel will zero out all instance variables of a new object.

The gNew class method works like any other class method. It receives, as its first argu-
ment, the object representing the class. If the constructor needs to take additional argu-
ments you can either use the vNew generic (which has no compile time argument checking
so the method can have any signature) or you can use a different generic name (such as
gNewInstance) which will have the desired argument signature.

The first thing the gNew method normally does is create an instance of the class. This
can be done by sending a super message to gNew. It must then pass the new object to an
instance method so that the instance variables can be accessed and initialized.

defclass MyClass {

char *iName;

int iAge;

};

private imeth init(char *name, int age)

{

iName = (char *) malloc(strlen(name)+1);

strcpy(iName, name);

iAge = age;

return self;

}

cmeth gNewInstance(char *name, int age)

{

return init(gNew(super), name, age);

}

Notice how the above example was also able to allocate additional storage for iName.

3.3.8 The Dispose Instance Method

Any class whose instances must do something more when being disposed of than just freeing
themselves, must define an instance disposal method. This method, called the destructor,
is usually associated with the gDispose and gDeepDispose generic functions.

In the example in the previous section one of the instance variables (iName) contained
a pointer to allocated storage. If the instance was freed without regard for this allocated
storage, the system would soon run out of heap space. Even the garbage collector couldn’t
help. So what we do is define a destructor which will free the instance appropriately. The
following code will illustrate this procedure:

62 Dynace Manual

imeth object gDispose()

{

free(iName);

return gDispose(super);

}

There are several things which may be noted from this example.

First, the method returns what is returned from the gDispose super call. By convention
the disposal generics return NULL. This is often used to null out a variable which references
an object which is being disposed and hence no longer valid.

Second, the call to free, frees the storage allocated and assigned to the iName instance
variable. It does not free the entire instance.

Third, the call to the super method is used to request any superclasses to perform their
freeing. Eventually, the super call will terminate at the Dynace Object class which will do
the actual freeing of the entire instance.

As discussed before, there are two ways to dispose of an object. The first, is by explicitly
evoking the gDispose generic function on an object. The second, and preferred, way is to
allow the garbage collector to dispose of the object when necessary.

If no special processes need to be performed to free an object, no destructor need be
defined. Dynace has a default disposal procedure which simply disposes of the individual
object.

3.3.9 Creating Generic Files

The generics.h and generics.c files are created by the dpp program. dpp reads in the
pre-defined classes and generics from a pre-existing generics.h files as well as user added
classes and generic information from class definition (.d files) files. dpp is able to parse
the necessary files and merge the information in order to obtain sufficient information to
generate the correct generic files for the application. See the section describing dpp for a
complete description of it.

Chapter 3: Mechanics 63

3.4 Dynace Pre-Processor (DPP)

The dpp program is the heart of the compile time functionality of Dynace. Dpp is capable of
reading in pre-existing generics declaration files (normally generics.h) and class definition
files (*.d files) and using this information to perform five specific tasks.

First, dpp is able to assimilate all the information read in and produce a merged generics
declaration file (normally generics.h) which can be included by the application. This file
includes all necessary declarations for the entire application, including class and generic
declarations and system includes.

Second, dpp is also able to use the information read in to produce an application specific
generics.c file. This is the file which contains all the actual generics as well as the generic
and class initialization procedures.

Third, dpp is able to read in a class definition file (*.d file) and produce a normal C file
(*.c) for compilation by your compiler.

Fourth, dpp will validate the argument and return type declarations between methods
and pre-existing generics to make sure there are no inconsistencies. This will only be done
for methods which have argument checking turned on. If an inconsistency is encountered,
dpp issues an error message, but does not stop its processing. It will, however, optionally
return an error code.

Fifth, it provides facilities so that the application specific generics.c file only need
be generated and compiled when absolutely necessary. It does this by comparing any
pre-existing generics.h file with one it’s about to create. If they are the same (i.e. no
new generics or classes have actually been added), then instead of generating the file, the
generics.h, generics.c and generics.obj files are just touched.

3.4.1 Controlling DPP

Dpp operates by first reading in all input files (regardless of their order on the command line)
and then using this information to check the input consistency and produce any requested
output files.

Dpp is non-interactive, all operational requests and parameters are given at the command
line. However, these command line arguments may also be located in files which dpp can
read as an extension of the command line. These files, called command files, may contain
any number of parameters in the same format as the normal command line. Parameters
may be spread across any number of lines because dpp ignores new lines, tabs and multiple
spaces located in one of these command files.

Command files are identified by a “@” followed by a file name with no intervening
spaces. Command files and normal command line parameters may be freely intermixed.
For example the following is quite legal.

dpp -g @cmdfile -h

Unlike the DOS standard, dpp only supports a hyphen or dash as an option switch. All
options are case sensitive.

64 Dynace Manual

A complete list of options may obtained by evoking dpp without any arguments. It will
display a complete list of all options and exit.

3.4.2 DPP Status Messages

During dpp operation, it will display the name of each file it is reading or writing, in addition
to any warning or error messages. At the end of its run, dpp will display a status message
similar to the following.

Classes = 48, 3, 51

Generics = 193, 15, 208

The first line indicates that dpp read in 48 class definitions via generic header files (i.e.
generics.h). It then encountered 3 new class definitions while processing source files (i.e.
*.c, *.d). This totaled 51 classes.

The second line indicates the same thing for generics.

3.4.3 Input Options (-g & -G)

Input options are those which cause dpp to read a file.

3.4.3.1 Generic Declaration Input

It is important that dpp have complete access to all related class and generic declarations
when processing any files. This is the only way dpp can have sufficient information to
adequately verify system consistency and produce complete generic files.

Typically, the single generics.h file associated with the application is all that is needed.
The main exception to this rule is when initially building the application specific generics.h
file or when wanting to build a new, clean one. In that case you should read in all the
generics.h files associated with all the subsystems you intend to use.

As shipped, Dynace only includes two such files in the include directory. One called
generics.h includes all the classes and generics defined by the Dynace kernel and class
library. A second, called wingens.h, includes all that’s in generics.h file plus all the
classes and generics associated with the Dynace Window Development System. You would
use one or the other, not both.

The command line argument used for this purpose is -g. Immediately following this
option may be a list of zero or more, space separated, generic file names to be read in. There
is always a space after the -g. If no file names follow the option, the single generics.h file
is assumed.

There is also a similar -G option which works the same except that it won’t return an
error code if one of the files can’t be found.

3.4.3.2 Source File Input (-s & -p)

Dpp includes two options for reading in source files. One command is for reading only and
the other is for reading and pre-processing.

Chapter 3: Mechanics 65

The -s option is for reading only. It reads in the specified files and uses this information
for consistency checks and producing complete generic files. It is capable of reading in the
new class definition files (*.d) as well as the old Dynace 2.x class definition files (*.c).

The -p option is for reading and pre-processing class definition files (*.d), thus producing
associated C source files (*.c) with the same file name prefix. The information read in is
also used as in the -s option, therefore, it would never be necessary to include the same file
for processing under the -s and -p options.

In addition to recognizing *.d files as class definition files, dpp will likewise recognize
*.dd, *.n, *.nn, *.i and *.ii in upper or lower case. Input file names ending in .dd,

.nn or .ii will produce corresponding .cc or .cpp files depending on whether you are on
Unix or DOS respectively.

3.4.4 Output Options

Output options are those options which cause dpp to create a file.

3.4.4.1 Generic Declaration File Creation (-h)

Once all the pre-existing generic declaration files (typically generics.h) and class definition
files have been read in, dpp is then able to produce a merged class and generic declaration
file for inclusion by application code.

The -h option is used for this purpose. The -h option may, optionally, be followed by
a space and file name. If the file name is given, dpp will use that file for the generic class
definition file. Otherwise, the default of generics.h will be used.

3.4.4.2 Generic Source File Creation (-c)

Use of the -c option causes dpp to generate the application specific C source file which
contains all the generics used by the application as well as generic and class initialization
code. Typically, the application specific generics declaration file (generics.h) contains all
the information needed for creation of this file.

The -c option may, optionally, be followed by a space and file name. If the file name is
given, dpp will use that file for the generic file. Otherwise, the default of generics.c will
be used.

If the generics.c file gets too large for your compiler environment see the Splitting the
Generics File (-M) dpp option.

3.4.4.3 Processing Class Definition Files (-p)

Dpp is capable, after reading in the appropriate generics declaration file, of reading a class
definition file, verifying its consistency with the system and generating a corresponding C
source file for compilation.

The -p option is for reading and pre-processing class definition files (*.d), thus producing
associated C source files (*.c) with the same file name prefix. The information read in is
also used as in the -s option, therefore, it would never be necessary to include the same file
for processing under the -s and -p options.

66 Dynace Manual

Input files ending in .dd will produce corresponding .cpp or .cc files depending on
whether you are on Unix or DOS.

3.4.4.4 Java Interface Files (-j)

Dynace has the ability to call Java code and have Java code call Dynace generics. The -j

option to dpp causes dpp to generate files used to interface with Java. This option also
takes an optional package name argument. The files generated are named object.java,
DynaceClassRef.java, and LoadDynClasses.c. These Java interface files, in concert with
the Dynace / Java interface DLL named JavaDynace.dll makes the interface possible.

3.4.4.5 Scheme Interface Files (-L1 & -L2)

Dpp has the ability to generate interface code to allow Dynace generic functions to be
accessible from within a Scheme language environment. Once the generics.h file is read
in (via the -g option) these options cause dpp to generate the necessary interface files for
two supported Scheme environments, LibScheme and MzScheme. This interface file may
be named after the option and will default to scminter.c. This file must be compiled and
linked with your application.

MzScheme is available at http://www.plt-scheme.org

3.4.5 Misc. Options

Dpp supports a variety of other options documented in this section. Some options, however,
are not documented. This is because some features are either experimental and not ready
for use or only used to support old versions of Dynace which are no longer supported in any
other fashion.

3.4.5.1 Preventing Unnecessary Compiles (-t)

Generic files (both .c and .h) files change whenever classes or generics are added or deleted,
or arguments to existing generics change. Whenever a class definition file is changed it must
be pre-processed to produce a compilable C file. Also, when class definition files change, it
may or may not be the case that new classes or generics have been added or existing generics
have changed argument types. In fact, except for a new development project, adding classes
and generics is relatively rare when compared to other code changes.

Given this fact, dpp is able to determine whether a significant change has occurred or
not. It does this by comparing the pre-existing application specific generics declaration file
(generics.h) with one it’s about to create. If they are the same, dpp does not create the
new generic file and instead remembers the fact that it was not necessary.

If it wasn’t necessary to generate the generic declaration file and the -t option is given,
dpp will touch the specified files in order to prevent the make utility from unnecessarily
building and compiling the corresponding generics.c file. This can lead to a significant
savings in time.

The -t option may, optionally, be followed by a space and space delimited list of file
names to touch. If the file list is given, dpp will touch the given files in the order given.
Otherwise, the default of generics.h generics.c generics.obj will be used. On unix

Chapter 3: Mechanics 67

systems generics.o is used instead. If any of the files don’t already exist, dpp will just
skip it.

3.4.5.2 Removing Classes or Generics (-r)

It is sometimes necessary to cause dpp to remove classes or generics from an existing
generics.h file. This is necessary when an old class or generic is no longer used, or
when the return type or arguments to a generic has been changed. If the return type or
arguments to a generic has been changed and you don’t want to rebuild the generics.h file
from scratch, it’s often easier to remove the old generic from the generics.h file and then
just re-scan the source file with the new generic definition to re-add the changed generic.
Once the generics.h file has been corrected a new generics.c file can be generated from
the correct generics.h file (with the -g -c options).

To use this option when generating generics files simply follow the -r option with a list
of classes and/or generics to remove (each separated by a space).

3.4.5.3 Splitting the Generics File (-M)

As a system becomes increasingly complex the number of generic functions increases. Dpp
typically generates a single generics.c file which contains all the generic functions defined
within the system. The problem with this is that in some limited environments (DOS or
16 bit Windows) there is a limit to the size a single source (.c) file can be so generics.c

gets too big to be compiled. The solution is to split generics.c into multiple smaller files.
Note that there isn’t any problem associated with the size of the generics.h file in these
environments.

The -M option causes dpp to split the generics.c file at the time it is created (using the
-c option). As part of the -M option you must include the number of generic functions to
split at. This option is not separated with a space. For example, using -M900 will cause the
first 900 generic functions to be defined in generics.c and the remaining generic functions
will be placed in a file names gens1.c. Gens1.c will have to be compiled and linked into
the application just as generics.c.

3.4.5.4 Including Additional Header Files (-Isc, -Iac, -Ish & -Iah)

It is sometimes necessary to cause additional header files to be included in the dpp generated
generics.c or generics.h files. This occurs when generic return or argument types are
defined in other include files. Therefore, these files must be included prior to declaring these
generics. Dpp has the -I series of options in order to support this feature.

Any particular -I type option should be followed by a space and space delimited list
of file names to include. Dpp will cause the specified files to be included by the generated
generics file in the specified order.

Use -Isc for system include files to be added to the generics.c file. Use -Iac for
application include files to be added to the generics.c file. Use -Ish for system include
files to be added to the generics.h file. And use -Iah for application include files to be
added to the generics.h file.

68 Dynace Manual

3.4.5.5 Ignoring Errors (-i)

Normally, while processing the input files, if dpp encounters some kind of an error, it displays
the error message and continues processing the input files. However, if an error occurs, dpp
does not normally produce any output files. The -i option causes dpp to produce the output
files requested anyway.

3.4.5.6 Quiet Operation (-q)

Normally, dpp displays continuous status messages indicating what files it is reading and
writing in order to give some idea of where it is in its process. The -q option may be used to
cause all unnecessary messages not to be displayed. This option, however, will not inhibit
error messages.

3.4.5.7 Return Code (-z)

Under normal operation dpp returns 0 if no error occurs and non-zero otherwise. This is
typically used to signal the make facility that an error occurred. The -z option is used to
cause dpp to return 0 regardless of whether or not an error occurs.

3.4.5.8 Compile Time Argument Checking (-N)

The -N option is used to cause dpp to treat all generics as if they were defined with compile
time argument checking turned off and generate code accordingly. In this case all generics
will take arbitrary arguments and depend entirely on runtime argument validation.

This was the way Dynace versions 1 and 2 worked. The capability is kept for two
reasons. First for backward compatibility. And second, to support environment which
require complete flexibility with respect to generic arguments.

3.4.5.9 Disabling #line directives (-nld)

Normally dpp generates line directives when preprocessing a class definition file into a C
source file. This is done in order to allow debugging on the original class definition file
instead of the generated C file.

If this feature is not wanted use the -nld option.

3.4.5.10 Extra #line directives (-eld)

Normally dpp generates line directives only when necessary (when the files get out of line
sync). This option causes dpp to (in addition to it’s normal #line directive output) output
a #line directive prior to each method.

3.4.5.11 Preprocessing Strategies (-S)

Dpp is capable of supporting four different code generation strategies. The various strategies
refer to different linkage conventions between generics and methods. The various alterna-
tives offer choices which determine the generated code’s portability, efficiency, and use of
C++ specific features.

Class definition files will work the same regardless of which strategy is selected. However,
it is absolutely critical that the entire system be compiled for one and the same strategy.
This includes generic files, class definition files and the Dynace system and class libraries
as well.

Chapter 3: Mechanics 69

To use this option you would use -Sn where n is a number between 1 and 4. There is no
space between the -S and the number. The various strategies are as follows:

Strategy 1 incorporates a small, system and compiler specific, piece of assembler code.
This strategy is the most efficient and the most recommended. This assembler piece is
supplied for many of the popular platforms. Writing the assembler piece for a new platform
is very easy for an assembler expert and documented in the next section of this manual. The
only down side of this strategy is lack of portability (if the assembler piece is unavailable).

Strategy 2 uses a total C based approach. This strategy maximizes portability and for
that reason it is the default strategy and the one used to generate the Dynace system as
shipped. The down side to this strategy is that it is less efficient in terms of execution speed
and stack space use than strategy 1.

Strategy 3 attempts to reduce the runtime overhead associated with strategy 2 by the
use of C++’s inline function facility. The resulting code will run faster but will incur a
heavy penalty in code size due to the inline expansions. This strategy is not typically
recommended.

Strategy 4 produces code similar to strategy 3 except that generics which have variable
arguments are treated like strategy 2 instead. This was done in order to accommodate
compilers such as GCC which cannot inline variable argument functions.

Remember, Dynace is shipped using strategy 2. If you wish to use a different strategy
you must rebuild the entire system with the selected strategy.

3.4.5.12 Generic Overloading (-X)

Dynace allows many methods to share the same generic function. This option has no effect
on that facility of Dynace.

Dynace also has the ability to simultaneously associate a single method with a fixed ar-
gument generic which has compile time argument checking and a variable argument generic
which has no compile time argument checking using the ’<>’ method declaration syntax.
Under normal operation dpp ignores the ’<>’ syntax and does not perform this association.
The -X option is used to enable dpp’s support for this feature.

This facility is used to enable Dynace to support users who like maximum compile
time argument checking and those who prefer maximum flexibility with regard to generic
overloading with the same code base.

3.4.5.13 Force Generics.h File Generation (-f)

Under normal operation, when generating a generics.h file dpp will first read in any
existing generics.h file and not generate a new file if the existing one is correct. The -f

option is used to force a new generics.h file regardless of its status.

This feature is useful when changing strategies. If none of the generics or classes have
changed Dynace would not normally generate a new generics file. This option will force a
new one, with the correct strategy, to be created.

70 Dynace Manual

3.4.5.14 Generating External Structures (-iv & -cv)

These options cause Dynace to generate external declarations for a class’s instance and class
variables respectively when preprocessing a class definition file. The file names used will be
the same as the source file except that the file will end in .iv or .cv respectively.

3.4.5.15 Class Initialization (-ni)

Under normal operation dpp generates the necessary class initialization file when prepro-
cessing a class definition file. This option is used to cause dpp not to generate this function.
The programmer will then be responsible for this function.

3.4.5.16 Auto Include Generation (-nai)

Under normal operation dpp automatically adds code to include the generics.h file in
generated generics.c and C source files. This option causes dpp not to perform this auto
inclusion.

This option along with the -mg option are used to support users who prefer a single
header per class.

3.4.5.17 Macro Guard Typedefs (-mg)

This option causes dpp to macro guard all typedefs and inline generics in the generics.h

file. This is used in conjunction with the -nai option to support one header per class. This
is an unrecommended configuration.

Chapter 3: Mechanics 71

3.5 Dynace Customization & Special Techniques

The Dynace kernel includes a class called Dynace. This class is used to query and set various
parameters which effect the global operation of Dynace. The following subsections detail
the various parameters which may be effected in Dynace as well as other special issues.

3.5.1 Makefile / Generics.h File Dependencies

All source files are technically dependent upon the application specific generics.h file.
However, it is important that the make utility not be made aware of this fact. This is
important because one of the main goals and advantages of Dynace is the fact that rarely
do changes to a class require other modules to have to be recompiled - even when the
changes cause changes to the generics.h file. If the makefile were made aware of this
dependency, there would be many, many totally unnecessary compiles performed.

Most changes to a class definition file, including changes in the instances or class variables
associated with the class, changes in the class hierarchy or algorithmic changes, have no
effect on the generics.h file. The only things which could potentially cause a change to
the generics.h file are the addition or removal of an entire class, the addition or removal
of a generic, or the changing of the argument list or return type associated with a generic.

With a little programmer cooperation and the disassociation (for make utility purposes)
of the generics.h file from other source modules the need for re-compiles can be very
drastically reduced. The make utility DMAKE and the example programs (the ones which
create classes) were designed with these concepts in mind. Emulation of these approaches
is highly advised.

The following subsections detail all the things which could change a generics.h file
and what effect it has on other modules. Advice on how to handle each situation will be
discussed.

3.5.1.1 Adding New Classes

The addition of a new class never requires automatic recompilation of any other modules.
Since the class was just added, the only modules which could even use the new class must
have also been edited in order to reference the new class object. In that case, those modules
will already be automatically recompiled anyway. Other modules don’t directly reference
the new class object and don’t require recompilation.

Remember that because of Dynace’s design, any previously compiled code which doesn’t
explicitly access a class by name, may still process and use arbitrary objects without having
knowledge of those objects prior to being compiled.

3.5.1.2 Removal Of Classes

Again, the removal of a class should never cause the automatic recompilation of all modules.
For starters, any module which references that class object will have to be edited, causing
it to be recompiled. You can’t possible forget to edit a file because the system won’t link
until all references to the removed class are eliminated.

The best approach is to use grep or some other file search utility to find all references
to the removed class and make the appropriate changes.

72 Dynace Manual

In addition to the above, it should be noted that dpp never removes a class declara-
tion from a generics.h file. Of course it really doesn’t matter if an unused declaration
exists, however, periodic rebuilding of the generics.h file from scratch will remove the
accumulated junk.

3.5.1.3 Adding New Generics

Adding new generics never causes the need for mass recompilation for the exact same reasons
as the addition of new classes. The only modules which could possible use it have to be
edited to put the new generic in and that will cause only the appropriate modules to be
recompiled. No other module is effected in any way.

3.5.1.4 Generic Removal

The removal of generics is a little more complex. First of all, if you remove a generic
from a class definition file, Dynace doesn’t automatically remove it from the generics.h

file. In fact, the removal of a generic from a class definition file has no effect at all on the
generics.h file. This is because without scanning all the class definition files and building
the generics.h file from scratch, Dynace has no way of knowing whether or not any other
module makes use of that generic. Therefore, Dynace leaves it in.

Because of the above, there is no advantage to associating the generics.h file to other
code. The bottom line is that if a generic is removed, you’ll have to search the code for use
of that generic and make appropriate changes. This will cause the appropriate modules to
be recompiled.

Another interesting thing about these facts is that rebuilding generics.h from scratch
on a periodic basis is a good idea in order to get rid of any unnecessary generics.

3.5.1.5 Generic Argument Or Return Type Changes

Of all the possible changes to a generics.h file this is the most troublesome. It’s also the
change which is performed the least. Once an application or class library reaches any level
of maturity, the existing protocols tend to change little. New features are implemented with
new generics.

It’s also difficult to change generic arguments because of the fact that the person making
the change must take into account the effect it will have on any other classes which use
the same generic. Generics with argument checking turned on must agree with all methods
which they are associated with. Generics with argument checking turned off are not effected
with this issue.

Having said that, however, there are only two ways of dealing with this situation. First
of all, if working on a team project, it should be agreed that no generics will be changed
without mutual agreement. It’s more common to just create a new generic.

The best way to deal with the problem is to search through all the code for references
to the generic and make the appropriate changes. This will cause only the effected files to
be recompiled.

Another, and poor, answer is to recompile everything and fix the modules which get a
compiler error.

Chapter 3: Mechanics 73

This issue is not bad if you think about it. What would you normally have to do if you
change the arguments to a regular C function? Answer - the same thing.

3.5.2 Compile Time Argument Checking

Dynace supports the simultaneous use of generics which have compile time argument check-
ing enabled and those that have the option turned off. By convention only, generics which
have compile time argument checking turned on begin with “g” and those that have compile
time argument checking turned off begin with “v”.

The programmer determines which generics have compile time argument checking turned
on or off at the time the generics are defined. Those introduced with imeth or cmeth have
argument checking turned on and those introduced with ivmeth or cvmeth have argument
checking turned off.

For those generics which have compile time argument checking enabled, the Dynace
preprocessor (dpp) will validate the argument lists between generics and their associated
methods during preprocessing time. All discrepancies between generics and their associated
methods will be reported at this time. Code which uses generics which have compile time
argument checking enabled will be validated by your normal C compiler by use of the dpp

generated declarations which exist in the generics.h file.

For generics with compile time argument checking turned off none of these checks will
be performed at compile time. The runtime system will be used to perform the necessary
checks.

3.5.2.1 Compile Time vs. Runtime Argument Checking

Before jumping to the conclusion that it’s always best to have compile time argument
checking turned on a few things should be mentioned. First of all Dynace has ample facilities
to perform argument validation at runtime. Second, runtime-only argument checking is
much more accurate and safe than compile-only time argument checking. Third, enabling
compile time argument checking on a generic causes inconvenient restrictions placed on that
generic as follows.

All methods associated with a generic which has compile time argument checking turned
on must have the exact same argument signature. On the other hand, a generic with compile
time argument checking turned off may be associated with methods with arbitrary argument
signatures. This adds a great deal of flexibility and convenience to the system at no loss of
safety except that you’ll not discover a problem until runtime instead of compile time.

The problem with compile time argument checking shows itself most with the gNew

generic. Instead of being able to use gNew for creation of instances of all classes, we have
to use things like gNewWithInt and gNewWithStr to differentiate the various argument
signatures. Not only is this ugly but it also causes the programmer to constantly ask “now,
which gNew do I use for this class?”.

The next sub-section details an alternative approach.

74 Dynace Manual

3.5.2.2 Sharing Methods

In order to accommodate programmers with different demands Dynace has the ability to
simultaneous support programmers who prefer compile time argument checking turned on
all the time and those who prefer more flexibility and better esthetics at the cost of not de-
tecting argument errors until runtime. Dynace has the ability to associate a single method
with both compile time argument checking generics and those without compile time argu-
ment checking within a single code base. The programmer may enable this feature when
building the system via the -X dpp option (see the appropriate section).

As shipped, Dynace includes several generics which are used to provide non-compile time
argument checking versions of conveniently overloaded generic functions including vNew,
vFind, vRemove, vFormat and vAdd. The entire system must be compiled with the dpp -X

option in order to enable them however.

3.5.3 Runtime Argument Validation

Whenever a generic function is evoked in Dynace, the system checks the validity of the first
argument. It makes sure that the first argument is in fact a valid Dynace object. If it is
not, Dynace will report that fact and abort the program. Otherwise, the continuation of
the program could reek havoc with the entire system.

This object checking comes at a runtime cost, however. This cost is incurred at every
evocation of any generic function. While the cost is relatively minimal, programs which
are well debugged may turn the checking off to maximize performance. The following code
fragment illustrates your control over object checking:

gObjectChecking(Dynace, 0); /* This line turns off object checking */

gObjectChecking(Dynace, 1); /* This line turns on object checking */

The default is for object checking to be turned on.

3.5.3.1 Additional Argument Validation

If runtime argument checking is turned on (the default) Dynace automatically checks the
validity and type of the first argument to all generics. It then dispatches to the appropriate
method. Since different methods associated with a particular generic may contain a different
number and types of arguments, it is the responsibility of the individual methods to validate
their remaining arguments.

Dynace provides several mechanisms to accomplish and simplify this task. The most
convenient mechanism is the use of several macros called ChkArg, ChkArgTyp, ChkArgNul
and ChkArgTypNul. These macros provide a very simple way of validating an argument as
being a valid Dynace object and, optionally, of being of a particular type. If the argument
is invalid an appropriate and meaningful error message will appear. These macros are also
used internally by Dynace where appropriate and may be controlled by the object checking
mode described in the previous section.

Other mechanisms which may be used are the IsObj function, the gIsKindOf generic,
the ClassOfmacro, the gInvalidObject generic, the gInvalidType generic and the gAbort
generic, as well as others.

The following code fragment illustrates the use of the ChkArgTyp macro:

Chapter 3: Mechanics 75

/* Validate that arg3 (the 3rd argument) is an instance of String

(or one of its sub-types) */

ChkArgTyp(arg3, 3, String);

/* Validate that arg4 (the 4th argument) is any Dynace object */

ChkArg(arg4, 4);

Note that the ChkArg set of macros may only be used as the first executable statements
in a method.

3.5.4 Methods With A Variable Number Of Arguments

Due to the way Dynace deals with the various method / generic interface strategies (de-
scribed under dpp subsection “Preprocessing Strategies”) it was necessary to construct a
standard way of dealing with methods which implement variable arguments. Use of these
conventions or standards assures the portability of method definitions across all support
strategies without loss of functionality or convenience.

The conventions used to deal with variable argument lists are fully described in the
section on the MAKE_REST and GetArg Dynace macros.

3.5.5 Tracing Facility

Dynace includes a powerful and flexible tracing facility to assist in the debugging of appli-
cations. The facility traces generic calls of arbitrary combinations of classes, generics and
methods. Each traced generic prints out the generic name, the type of the first argument
to the generic, the name of the method found and the class of the method found.

The tracing facility has three global modes controlled by Trace::Dynace. It can be
turned off (the default) to disable all generic tracing. It can be turned on in order to trace
generic calls associated with classes, generics or methods which have their tracing options
activated (via Trace::Behavior, Trace::GenericFunction and Trace::Method) and none
deactivated. The third mode is to turn tracing on all. This traces all generic calls which do
not have their tracing specifically deactivated or are not associated with classes or methods
which are specifically turned off.

Note that when referring to classes in the context of the tracing facility, it refers to both
the class of the first argument to the generic and the class associated to the method found.

The tracing facility can be turned on and modified at any number of arbitrary points of
the application.

Trace output is sent to the stream traceStream which defaults to stdout.

See Trace::Dynace, Trace::Behavior, Trace::GenericFunction, Trace::Method,
TracePrint::Dynace and traceStream for more information.

3.5.6 Memory Management and Object Disposal

As stated earlier, all objects in Dynace are allocated from the heap. In fact the object

declaration actually declares a variable to be a pointer to this allocated memory. Therefore,
when an object is no longer needed, it must be returned to the heap. If this is not done

76 Dynace Manual

you would eventually run out of heap space. Dynace has two methods of accomplishing this
task, disposal generics and the garbage collector.

Any class whose instances must do something more when being disposed of than just
freeing themselves must define an instance disposal method. The types of additional things
this disposal method would normally do is free any additionally allocated storage which is
local to the object being freed or perform any processing which needs to be performed at
object disposal time.

The disposal methods are associated with the gDispose and gDeepDispose generic func-
tions.

The gDispose generic is typically used to dispose of a single object and any associated
allocated space it may reference. The system default gDispose will handle getting rid of
the single object so the only time a specific method is needed is when the object allocates
its own memory from the heap or other processing needs to occur at the disposal time. A
programmer defined gDispose method would typically free any allocated space associated
with the object and then call its super gDispose method.

The gDeepDispose generic, in addition to performing the same functions as the gDispose
generic, is typically used to dispose of whole group of related objects at the same time.
This method will typically recursively call the gDeepDispose generic on all objects being
referenced within the object being disposed. The system default gDeepDispose method
performs the same function as the system default gDispose method.

3.5.7 Speeding Up IsObj

IsObj is a function which validates a Dynace object pointer at runtime. This function
is a small and fast function but gets called quite a lot and often accounts for much of
the overhead associated with Dynace. This overhead is significantly exasperated in the
Windows environment where the heap is non-contiguous.

Dynace’s allocation scheme is designed to be memory efficient. However, this scheme is
at odds, under Windows, with the speed of the system. Dynace has facilities to eliminate
this overhead under Windows. If you build and run a Dynace based application, you can
call gMAxMemUsed(Dynace) after running through a representative run of the application
and before exiting to determine the amount of Dynace memory the application used. You
can then use the Dynace_GetInitialPageSize() function to cause Dynace to allocate that
amount as a single chunk of memory thus significantly speeding up the application. Dynace_
GetPageSize() can also be used to set reasonable values. See the relevant documentation
for those functions in this manual.

Note that this issue and its corresponding solution are only relevant in a Windows
environment. Unix / Linux don’t suffer from these problems.

3.5.8 Garbage Collection

The way the garbage collector works is that it keeps track of your maximum real memory
requirements, after a garbage collection. Whenever your current memory usage exceeds
a user defined number of bytes over the maximum real memory requirements, a garbage
collection is evoked. Thus, the automatic aspects of the garbage collection process may

Chapter 3: Mechanics 77

be controlled by specifying this user defined buffer area. If the buffer area is negative, no
garbage collection process will take place. You will just have to explicitly dispose of any
unneeded objects. The buffer area may be defined as follows:

gSetMemoryBufferArea(Dynace, 40000L);

Notice that the argument must be a long type. If passed a negative long value, garbage
collection will be turned off. The default setting is -1L.

The smaller the buffer area is, the more often the garbage collector will have to run, and
the slower the system will operate. However, the memory requirements of the system will
be as small as possible. The larger the buffer area the less frequently the garbage collector
will have to run, and therefore, the faster the system will run. However, if the buffer area
is too large, the system will experience delays when the very infrequently called garbage
collector has to collect a large volume of garbage. The best setting should be determined
experimentally. Just remember that the memory requirements of the system will be equal
to the real memory requirements of the system plus the buffer area. A starting value of
about 40000L is recommended.

The garbage collector may be manually evoked with the following line:

gGC(Dynace);

Any class whose instances allocate memory from the heap must define an instance
method which is associated with the gGCDispose generic. The garbage collector auto-
matically calls this method when it frees an object. It must free the allocated space and
call the gGCDispose super method just like a gDispose method. The only difference be-
tween the gDispose and gGCDispose methods is that the gGCDispose method should free
allocated memory but must never dispose of any other Dynace object. Although it may
perform any other necessary disposal type processing. Typically the gDispose method is
adequate as a gGCDispose method and is used as such.

The garbage collector in Dynace uses an algorithm which does not require a lot of stack
space even while collecting highly recursive data structures. The stack requirements are
constant regardless of the objects being collected.

Dynace offers an alternative garbage collection scheme which has important tradeoffs.
See the sub-section on the Boehm Garbage Collector.

3.5.9 Global or Static Variables

The Dynace garbage collector only marks objects which are accessible, either directly or
indirectly, via automatic variables (those on the stack). Therefore, if you create an object
and assign it to a global or static variable (a variable not on the stack) only, the garbage
collector will not mark those objects. If those objects are not marked they will be freed.
This is probably not what you want.

Note that under Win32, Dynace has special code and can automatically detect and mark
unregistered globals or statics. Therefore manual registration of these memory locations is
not needed under Win32.

78 Dynace Manual

Dynace has the ability to register a memory range with the garbage collector so that
any valid objects referenced in this range will be marked. This will prevent the freeing of
these needed objects. The following example illustrates the registration of a single global
variable, GV:

RegisterVariable(GV);

This will cause the garbage collector to mark all objects which GV refers to, either directly
or indirectly. It is OK for GV to not refer to a valid object.

Dynace also includes a method of marking a range of addresses. The following example
illustrates its usage:

gRegisterMemory(Dynace, begRange, size);

The RegisterVariable macro actually calls gRegisterMemory.

3.5.10 Boehm Garbage Collector

In addition to the garbage collector (GC) which is part of Dynace, Dynace supports another
GC which is freely available and widely used throughout the industry. This GC is not owned
or supported by Algorithms Corporation or Blake McBride. It is called the Boehm GC and
is copyrighted by Hans-J. Boehm, Alan J. Demers and Xerox Corporation.

The Dynace GC is only capable of collecting Dynace objects and requires a bit of pro-
grammer effort when dealing with non-Dynace objects such as application malloc’ed memory
(which the Dynace GC will not collect) or global variables. The Boehm collector has been
integrated with Dynace such that it will collect Dynace objects as well as application mal-
loc’ed memory. In addition, the Boehm GC requires somewhat less programmer effort in
order to work correctly. The main advantage of the Dynace GC is that it is more portable
and comes with vanilla Dynace. The Boehm GC will not work in 16 bit environments such
as DOS or 16 bit Windows.

In order to use the Boehm GC you must re-compile the entire Dynace system with
the macro BOEHM_GC defined. In addition, the application must also be compiled with that
macro defined and linked with the Boehm GC library. Both collectors cannot be used at the
same time, one or the other. When using the Boehm GC there is no need to enable it, set
the buffer area, or register memory regions. It’s on all the time and functions automatically.
See the Boehm GC documentation.

If your Dynace package didn’t come with the Boehm GC source code you may obtain it
via one of the following internet or e-mail sources:

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

http://reality.sgi.com/employees/boehm_mti

ftp://parcftp.xerox.com/pub/gc

Hans_Boehm@hp.com

boehm@acm.org

3.5.11 Native Thread Support

Dynace has been designed to support a truly multi-threading environment. This is not the
simulated threads supplied with Dynace but the true threads provided by the underlying

Chapter 3: Mechanics 79

system. Dynace utilizes critical sections or semaphores to ensure safe operation in a true
multi-threading environment.

To enable this facility Dynace must be built from scratch with NATIVE_THREADS=1 set on
the makefile line. The same is true for all applications which intend to use native threads.
Dpp generates class files with the structures defined and used by Dynace already protected.

Additionally, the interface to the underlying system’s critical section or semaphore fa-
cility will have to be provided. With knowledge of this area it is simple to provide. Dynace
comes shipped with native thread support for Win32 only at this time. See include/dynl.h
and the *.c files generated by dpp.

3.5.12 Method Cache

As stated earlier, the Dynace system caches method dispatching. This caching speeds up
the system tremendously. The larger the cache the better. The default cache size is rather
small, and may be user controlled. The following line may be used to set the cache size:

gResizeMethodCache(Dynace, 51, 101);

This example sets the cache size to 51 classes and 101 generics. These numbers do not
have to reflect the actual number of classes and generics you have. They are just used to
setup the cache. Regardless of the numbers used, the system can handle any number of
classes and generic functions.

If this function is used, it should be used soon after initialization of the Dynace system.

3.5.13 Memory Compaction

Dynace includes a memory allocator which is capable of performing memory compaction.
This is used by the String class (as well as possibly other classes) to reduce or eliminate
memory fragmentation. Since the compactor (MA_compact()) may relocate memory, it is
never called automatically by Dynace. After a call to MA_compact all pointers previously
returned by Dynace generics such as gStringValue may be invalid. All object pointers,
however, will always be valid.

The compactor would typically be called, manually, after a number of operations which
would typically fragment memory.

3.5.14 Avoiding Runtime Method Lookup Costs

There is a small runtime overhead associated with the runtime binding mechanism of Dynace
(or any system which has runtime binding). This overhead is kept to a minimum by the
Dynace method cache and other techniques employed by the Dynace system. It is possible,
however, to locally cache a method so as to reduce the future runtime overhead to zero.
This technique is normally only used in tight loops where there is no chance of using the
wrong method. Overuse of this technique is strongly discouraged.

See the macros cmcPointer, cmiPointer, imcPointer and imiPointer for further de-
tails and examples. There is also an example program which demonstrates the technique.

80 Dynace Manual

3.5.15 Generic Functions As First Class C Objects

In C, variables are treated as first class objects. That is they may be defined, initialized,
assigned to (value change) and localized in any arbitrary block. C functions, on the other
hand, are sort of second class (or static) objects. They may be defined but they can’t be
changed (at runtime) or localized in an arbitrary block.

In Dynace generic functions are implemented in such a way that they are first class
objects, just like variables. That is they may be assigned to, passed and localized just like
variables.

See the relevant example for more details.

3.5.16 Static Binding

It is possible to perform static binding with the Dynace system. Doing so, however, is
highly discouraged because it eliminates much of the flexibility and encapsulation properties
of Dynace. The only reason someone might want static binding is for efficiency reasons.
These needs, however, may be met by local method caching described above. (See the
sub-section on Avoiding Runtime Method Lookup Costs.)

In order to perform static binding you declare your method as a normal C function
instead of using the method declaration syntax. You must also declare its first argument to
be object self, and explicitly use the accessIVs macro.

From that point on it will act as other methods and may then be called directly, without
going through the generic.

When calling a method directly it is the programmers responsibility to validate the
validity and type of the first argument.

3.5.17 Allocating Objects From The Stack

All objects in Dynace are normally allocated from the heap. This allows for the maximum
flexibility in terms of their life time and scope. However, Dynace does have a limited
capability to allocate objects from the stack.

The two advantages of allocating objects from the stack are that the allocation process,
and hence the creation of the object, is very fast. The second advantage is that no explicit
object disposal is necessary. Stack based objects simply disappear when the code goes out
of scope in a fashion similar to automatic variables. Thus, there is zero overhead associated
with the object’s disposal.

The two disadvantages associated with stack based objects are that stack based objects
are limited to the stack size and there is no provision for auto execution of an object
destructor. In addition, object creation is a bit clumsy.

Dynace provides two ways to dispose of a heap based object. First it can be explicitly
disposed via the gDispose or similar generic. Second, it can be automatically disposed
via the garbage collector. Both mechanisms allow the programmer to specify additional
processing which must be performed when the object is disposed (such as freeing memory
or closing files). Unfortunately, stack based objects do not have this ability unless they

Chapter 3: Mechanics 81

are explicitly disposed and explicitly disposing of objects mostly negates the whole value of
having stack based objects in the first place.

Explicit disposal of stack based objects does not free up any stack space until the scope
is exited. Therefore, if five objects are created and freed in sequence in the same stack
frame the stack space required will be that of all five objects.

Due to the above facts stack based objects are generally discouraged. However, in cases
where they are needed and no special disposal is required they can fit the bill.

See documentation on the StackAlloc for further details.

82 Dynace Manual

3.6 Notes On Compilers, Rebuilding And Porting Dynace

Dynace has been designed and tested to be as portable as possible. At the time of the
writing of this manual Dynace has been compiled and tested under MS–DOS, Windows 3.1,
Windows 95, Windows NT, Interactive UNIX, UHC UNIX, Linux and Sun SPARC and the
Alpha processor. Compilers used were Microsoft Visual C++ 1.0 and above (16 and 32 bit),
Borland C++ 3.1 and above (16 and 32 bit), WATCOM C/C++^32 9.0 and above, Symantec
C++ version 7.21 (32 bit), GNU C 2.4 and above. In addition several prior versions of each
of the above compilers were also tested.

When dpp strategy 1 is selected there is one small piece of assembler (the jumpTo code)
used by the Dynace system. This code is specific to each compiler/model/OS combination.
All jumpTo assembler routines which have been developed have been included with the
system. There is no assembler required for the default strategy of 2.

The Dynace threader uses the C library functions setjmp/longjmp. When using these
functions it is important not to over-optimize a program (as most compiler documentation
attest). The included makefiles where designed to maximize the reliability of the Dynace
threader. If the threader is not going to be used more aggressive optimization may be used.

The generics file must always be compiled with the optimization options (usually maxi-
mum) defined in the makefiles.

3.6.1 DMAKE

The makefile utility used for all builds, except unix, is DMAKE. DMAKE is a very powerful,
portable and enhanced make utility developed by Dennis Vadura. It is freely distributable
and not owned by Algorithms Corporation or Blake McBride. Complete documentation for
this utility is contained in \DYNACE\DOCS\DMAKE.MAN

3.6.2 MS–DOS

All 16 bit MS–DOS libraries were built using the large memory model. There is no reason
why Dynace could not be run in other models other than the size restrictions they present.

Compilation for other memory model may require different jumpTo assembler code which
is not needed when using the default dpp strategy of 2.

3.6.2.1 Microsoft Visual C++

The makefiles used for this compiler are all called M16.DM or M32.DM depending on whether
it’s for the 16 or 32 bit compiler.

Since the Dynace threader makes use of setjmp/longjmp and the Microsoft Visual C++
documentation recommends not to use most of the optimization features when setjmp is
used, it is recommended to use only the optimization options used in the included make
files. It has been demonstrated that the -Oe option causes problems with the threader. If
the threader is not going to be used much heavier optimization may be used.

Maximum optimization with no stack checking must always be used when compiling the
generics file.

Jumto assembler for both the 16 and 32 bit compilers are provided for this compiler so
any dpp strategy may be used.

Chapter 3: Mechanics 83

3.6.2.2 WATCOM Compilers

The makefiles used for this compiler are all called W32.DM.

All testing was done with WATCOM C/C++^32 version 10.0. Versions 9.0 and 9.5 were
used in the past.

The flat memory model is used with argument passing on the stack. The target system
is DOS4G.

When switching between version 9.0 and 9.5 of the compiler two different jumpTo rou-
tines must be used. jumpto.w is for version 9.5 and 10.0, jumpto.w90 is for version 9.0.

Maximum optimization with no stack checking must always be used when compiling the
generics file.

3.6.2.3 Borland C++

The makefiles used for this compiler are all called B16.DM or B32.DM depending on whether
the 16 or 32 bit compiler is used.

Since the Dynace threader makes use of setjmp/longjmp and the Borland C++ documen-
tation recommends not to use most of the optimization features when setjmp is used, it is
recommended to use only the optimization options used in the included make files. If the
threader is not going to be used much heavier optimization may be used.

The Dynace threader will not run under the huge model with the Borland compiler due
to what is believed to be a problem with the Borland huge model setjmp/longjmp functions.

Maximum optimization must always be used when compiling the generics file.

Jumto assembler for both the 16 and 32 bit compilers are provided for this compiler so
any dpp strategy may be used.

3.6.2.4 Symantec C++

The makefiles used for this compiler are all called S32.DM for their 32 bit compiler.

Symantec compilers version 7.2 and prior are known not to work due to compiler bugs.
Version 7.2 plus a patch from Symantec as well as 7.21 did work.

There is no jumpto assembler code for this compiler so dpp strategies 2 or above must
be used. The 16 bit version of their compiler was never tested.

3.6.3 UNIX

The makefiles associated with the UNIX build are all named makefile.unx.

Only the GNU C compiler has been used.

Because of the linear memory associated with UNIX (or other 32 bit environments)
Dynace runs quite well under it.

Since DOS puts CR/LF pairs at the end of each line and UNIX expects just a LF
there is a problem with several source files. Since Dynace uses multi-line macros UNIX
expects lines which are continued to end in backslash/LF combinations. In DOS they end
in backslash/CR/LF combinations. The extra CR causes a problem under UNIX. In order

84 Dynace Manual

to fix the source files (get rid of the extra CR) Dynace includes a utility (in source form)
to correct the files. The utility is called delcr.c and is located under the bin directory. It
may be compiled and applied to all *.c, *.h, *.s, makefile.unx, readme files. The files
which causes the most trouble are dynl.h under the include directory, thread.c under
the threads directory, array2.h under the class directory and all the makefile.unx files.
delcr may be used by simply naming the files to be converted on the command line. Wild
characters are ok.

In addition note that the top level makefile is set up to correct all the files in the system
automatically.

The -O option cannot be used with any GNU C compiler prior to version 2.5. This is
because functions declared volatile (returning type object) were assumed not to ever return
(by design). This feature has been eliminated in GNU C 2.5.

Although we can not support it, Dynace has been ported to the Sun/SPARC and Alpha
chip environments by some of our users. The jumpTo code is contained in the file name
jumpto.s2. All necessary files are included with the system. See the makefiles for additional
information.

3.6.4 Using A Debugger

Because of the way Dynace dispatches methods it is often difficult to trace through a generic
call at the C source level. It has been found that if a break point is placed at the beginning
of the actual method the debugger will stop there when going through the generic. So, for
example, if you want to trace into a call to the gNew generic and you know you are dealing
with the ShortInteger class, you may put a break point on the ShortInteger_im_gNew

method in the shortint.c file and continue. The system will stop at the ShortInteger_

im_gNew method and you should be able to continue as normal. If you are not sure what
class the object is just but a break point on all the possible methods the generic will dispatch
to.

There is not a problem when debugging a program at the machine instruction level.
Therefore, it is possible to step at the C level up to a generic call, switch to the machine
instruction level, step through the generic call until the method is reached, and then switch
back to the C source level.

See the section on the Dynace tracing facility for help debugging a program.

3.6.5 Porting To Other Compilers, Memory Models or OSs

There are several issues associated with porting Dynace to a new environment. These issues
are covered in the following subsections.

Dynace includes a few short programs to assist in the porting process. They are located
under \DYNACE\KERNEL\PORT.

3.6.5.1 JumpTo Assembler Code

The Dynace preprocessor (dpp) is capable of supporting various method / generic interface
strategies which are described on the section documenting dpp. While the default strategy
(2) does not require any assembler code, the more efficient strategy (1) does. Although

Chapter 3: Mechanics 85

Dynace comes with the necessary assembler code for many platforms, this section outlines
the steps necessary to create the assembler code for a new environment.

Basically, the assembler must take a pointer to a function as an argument, pop two stack
frames and jump (not jsr) to the function passed.

The best way to create this code is to compile jumpto.c (provided with Dynace) into
assembler, modify it and then assemble it. Compiling generics.c into assembler for reference
is also helpful. Running the code through a machine instruction debugger is a must.

Basically what you need to do is write down the state of the stack pointer and registers
upon entry of the generic function. Next, allow the generic function to calculate the method
to execute and call the jumpTo code. Finally, (and this is the part that needs to be modified)
the jumpTo code should call the method such that upon entry of the method the stack
pointer and registers look as though they did when the generic function was entered.

For someone that knows assembler this process should take about an hour.

3.6.5.2 GC & CPU Registers

If objects can exist in CPU registers, then the Dynace Garbage collector must have access
to them in order to mark them so as not to incorrectly collect them. Dynace has two ways
of dealing with this.

The first way is to declare objects to be volatile. This causes the compiler not to keep
any objects in registers. While this is a safe and portable solution it also slows the system
down a bit. It is, however, required by 16 bit compilers because they tend to split far
pointers and store them on the stack in non-contiguous locations.

The second possibility is to explicitly mark objects which are referenced via registers.
This is the best solution but requires a small bit of inline assembler. This code would be
located in kernel.c under the GC function.

3.6.5.3 Memory Alignment

Memory alignment determines where in memory objects can be stored. By selecting efficient
memory alignments you can maximize the code and garbage collector efficiency. Typically,
alignment is on 4 byte boundaries for 32 bit systems and 2 byte on 16 bit systems.

Dynace includes support for 2 and 4 byte alignments via the ALIGN2 and ALIGN4 macros
located in kernel.c.

3.6.5.4 Linear vs. Segmented Memory

As might be expected, Dynace runs much more efficiently in 32 bit, linear memory mode.
Under linear mode Dynace can more quickly determine object validity, a function which is
often performed.

Dynace supports both modes via the SEGMENTED_MEMORY macro contained within
kernel.c.

86 Dynace Manual

3.6.5.5 Thread Timer

The Dynace multi-threader requires some mechanism whereby the OS is able to execute an
application defined function on a regular basis. The frequency would normally be between
50 and 100 times or more a second.

3.6.5.6 Setjmp/longjmp Functionality

Since the multi-threader makes heave use of the setjmp/longjmp system functions, it is
important that those functions save and restore the registers in addition to the stack frame.
This will enable maximum reliability of local variables associated with threads.

87

4 Kernel Reference

The Dynace kernel consists of the bare minimum of classes, methods, and generic functions
needed to implement the object oriented concepts discussed herein. This chapter will discuss
the structure and various facilities available in the Dynace kernel.

Note that the first argument to all class methods is always the associated class object
and the first argument to all instance methods is always an instance of the associated
class. Therefore, documentation for the first argument of generics is not always given – it’s
redundant.

A convention used throughout the Dynace system is for method names to start with a
capital letter and for the associated generic to have the same name with a lower case “g”
placed at the beginning. Therefore, even though this manual documents the methods, the
programmer would access the methods through their associated generics (add the “g”).

88 Dynace Manual

4.1 Kernel Class Hierarchy

This Dynace kernel contains the following class hierarchy:

Object

Behavior

Class

MetaClass

Method

GenericFunction

Dynace

Chapter 4: Kernel Reference 89

4.2 Object Class

The Object Class is the root of all objects in Dynace. It is the last place searched when
looking for a given method. As such, the Object Class defines the default behavior for all
objects in Dynace.

4.2.1 Object Class Methods

There are no class methods defined for the Object class.

4.2.2 Object Instance Methods

Object’s instance methods define the default behavior for all objects in Dynace.

[BasicSize]BasicSize::Object

sz = gBasicSize(obj);

object obj;

int sz;

This method is used to obtain the entire size of an object including all header infor-
mation and instance variables. The number returned does not include space allocated
and pointed to by the object.

Example:

object x;

int sz;

x = gNewWithInt(ShortInteger, 77);

sz = gBasicSize(x); /* sz = 6 */

See also: Size::Object, InstanceSize::Behavior

[Compare]Compare::Object

r = gCompare(i, obj);

object i;

object obj;

int r;

This is the default method used by the generic container classes to determine the
equality of the values represented by i and obj. r is -1 if the value represented by i

is less than the value represented by obj, 1 if the value of i is greater than obj, and
0 if they are equal.

This method only compares the pointer values of the two objects and is, therefore,
usually overridden in other classes.

90 Dynace Manual

See also: Hash::Object

[Copy]Copy::Object

new = gCopy(obj);

object obj;

object new;

This method is used to make a copy of an object. A new instance of the same class
as obj is created. Then the information contained in obj is copied to the new object
created (new). The new object is returned.

Any classes whose instance’s allocate memory may need to override this method.

This default method is the same as the DeepCopy::Object method and would need
to be overridden if they need to be different.

Example:

object x, y;

x = gNewWithInt(ShortInteger, 77);

y = gCopy(x);

See also: DeepCopy::Object, EQ, Equal::Object

[DeepCopy]DeepCopy::Object

new = gDeepCopy(obj);

object obj;

object new;

This method is used to make a copy of an object. A new instance of the same class
as obj is created. Then the information contained in obj is copied to the new object
created (new). The new object is returned.

Any classes whose instance’s allocate memory may need to override this method.

This default method is the same as the Copy::Object method and would need to be
overridden if they need to be different.

Example:

object x, y;

x = gNewWithInt(ShortInteger, 77);

y = gDeepCopy(x);

Chapter 4: Kernel Reference 91

See also: Copy::Object, EQ, Equal::Object

[DeepDispose]DeepDispose::Object

r = gDeepDispose(obj);

object obj;

object r; /* NULL */

This method is used to free the storage allocated when a new object is created. Any
class whose instances don’t contain pointers to other allocated space or references to
other objects may normally just default to this DeepDispose.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object x;

x = gNewWithInt(ShortInteger, 77);

x = gDeepDispose(x);

See also: Dispose::Object, GCDispose::Object

[Dispose]Dispose::Object

r = gDispose(obj);

object obj;

object r; /* NULL */

This method is used to free the storage allocated when a new object is created. Any
class whose instances don’t contain pointers to allocated space may normally just
default to this Dispose for their disposal when no longer needed. Note that when the
garbage collector disposes of objects it calls the GCDispose method.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Example:

object x;

x = gNewWithInt(ShortInteger, 77);

x = gDispose(x);

See also: DeepDispose::Object, GCDispose::Object

92 Dynace Manual

[Equal]Equal::Object

r = gEqual(obj1, obj2);

object obj1, obj2;

int r;

This method is the default method used to check two objects for equality by comparing
their contents. 1 is returned if they are of the same class and contain the same contents
and 0 otherwise.

This method should be overridden if the comparison should take into account storage
other than the local instance storage. The String class is a good example of this.

Example:

object a, c, c, d, e;

int r;

a = gNewWithInt(ShortInteger, 77);

b = gNewWithInt(ShortInteger, 77);

c = gNewWithInt(ShortInteger, 8);

d = gNewWithInt(Dictionary, 99);

e = gCopy(b);

r = gEqual(a, a); /* r == 1 */

r = gEqual(a, b); /* r == 1 */

r = gEqual(a, c); /* r == 0 */

r = gEqual(a, d); /* r == 0 */

r = gEqual(a, e); /* r == 1 */

See also: EQ

[Error]Error::Object

gError(obj, msg)

object obj;

char *msg; /* Error message */

This method is used to display an error message (msg using Puts::Stream and
stderrStream) and abort the program. msg may also be an instance of String.

Example:

gError(Dynace, "Out of memory.\n");

See also: Puts::Stream, stderrStream

Chapter 4: Kernel Reference 93

[GCDispose]GCDispose::Object

r = gGCDispose(obj);

object obj;

object r; /* NULL */

This method is used to free the storage allocated when a new object is created. This is
a special type of dispose method which should only be called by the garbage collector
in Dynace. The GCDispose method must be defined for any class whose instances
contain allocated space. It should unregister any registered memory associated with
the object, free the allocated space and then call the super GCDispose. It must not
free any objects which are referenced, either directly or indirectly, by the object being
disposed of.

This default method simply disposes of the individual object.

See also: Dispose::Object, DeepDispose::Object

[Hash]Hash::Object

val = gHash(i);

object i;

int val;

This is the default method used by the generic container classes to obtain hash values
for the object. val is a hash value between 0 and a large integer value.

This default method only hashes on the pointer value of the object, therefore, it is
normally overridden in other classes.

See also: Compare::Object

[Init]Init::Object

r = gInit(obj);

object obj;

object r;

This method is used as the default object initialization method for new objects when
used in conjunction with Alloc::Behavior. The default behavior is to do nothing,
therefore, this method does nothing but return its argument. Normally, classes would
redefine this method to perform some class specific useful initialization.

94 Dynace Manual

Example:

object x;

x = gInit(gAlloc(MyClass));

See also: Alloc::Behavior, New::Behavior

[IsKindOf]IsKindOf::Object

r = gIsKindOf(obj, cls);

object obj;

object cls;

int r;

This method is used to determine if class cls is the class of or a superclass of obj. If
so a 1 is returned and 0 otherwise.

Example:

object a, b;

int c;

a = gNewWithInt(ShortInteger, 7);

b = gNewWithInt(Dictionary, 101);

c = gIsKindOf(a, ShortInteger); /* c == 1 */

c = gIsKindOf(a, LongInteger); /* c == 0 */

c = gIsKindOf(b, Dictionary); /* c == 1 */

c = gIsKindOf(b, Set); /* c == 1 */

c = gIsKindOf(b, LinkList); /* c == 0 */

See also: IsKindOf::Behavior, IsInstanceOf, ClassOf

[Print]Print::Object

ret = gPrint(obj, stm);

object obj;

object stm;

object ret;

This method is used to print out a representation of an object and its value to stream
stm. It evokes StringRep on obj in order to obtain a printable representation of the
object.

The returned value is just obj.

Chapter 4: Kernel Reference 95

Example:

object x;

x = gNewWithInt(ShortInteger, 77);

gPrint(x, stdoutStream);

/* this would print something like:

ShortInteger:<0x0034:4721> [77] */

See also: PrintValue::Object, StringRepValue::Object, stdoutStream

[PrintValue]PrintValue::Object

ret = gPrintValue(obj, stm);

object obj;

object stm;

object ret;

This method is used to print out a representation of an object’s value to stream stm.
It evokes StringRepValue on obj in order to obtain a printable representation of the
object.

The returned value is just obj.

Example:

object x;

x = gNewWithInt(ShortInteger, 77);

gPrintValue(x, stdoutStream);

/* this would print something like: 77 */

See also: Print::Object, StringRepValue::Object, stdoutStream

[ShouldNotImplement]ShouldNotImplement::Object

gShouldNotImplement(obj, meth)

object obj;

char *meth;

This method is used to display an error message indicating that the class of obj (or
any of its subclasses) should not implement method meth. meth is the name of the
method.

96 Dynace Manual

This method may be useful to help catch class misuse by users of a class. It issues a
helpful message when attempting to use a class inappropriately.

The message is output via Error::Object which also aborts the program.

See also: Error::Object

[Size]Size::Object

sz = gSize(obj);

object obj;

int sz;

This is the default method used to obtain the size of an object. It returns the total
number of bytes use by the objects instance variables. This method is often overrid-
den.

Example:

object x;

int sz;

x = gNewWithInt(ShortInteger, 77);

sz = gSize(x); /* sz = 2 */

See also: BasicSize::Object

[StringRep]StringRep::Object

s = gStringRep(i);

object i;

object s;

This method is used to provide a default format for the display of instance objects.
It creates an instance of the String class which represents the class of the object,
its address and value. The value is obtained by calling the object’s StringRepValue
method. This is often used to print or display a representation of an object. It is
also used by by Print::Object (a method useful during the debugging phase of a
project) in order to directly print an object to a stream.

See also: Print::Object, PrintValue::Object, StringRepValue::Object

Chapter 4: Kernel Reference 97

[StringRepValue]StringRepValue::Object

s = gStringRepValue(i);

object i;

object s;

This method is used to provide a default mechanism for creating an instance of the
String class for the display of instance object’s values. It displays the class of the
object, and its address. This method is called by the StringRep method to obtain
the value of the object and is normally overridden by particular classes.

It is also used by PrintValue::Object and indirectly by Print::Object (two meth-
ods useful during the debugging phase of a project) in order to directly print an
object’s value.

See also: PrintValue::Object, Print::Object

[SubclassResponsibility]SubclassResponsibility::Object

gSubclassResponsibility(obj, meth)

object obj;

char *meth;

This method is used to display an error message indicating that method meth should
be implemented by a subclass of the class of obj. meth is the name of the method.

This method may be useful when grouping common interfaces in an abstract class to
insure that its subclasses implement the correct methods.

The message is output via Error::Object which also aborts the program.

See also: Error::Object

98 Dynace Manual

4.3 Behavior Class

The Behavior Class is used to define the default behavior common to Class and MetaClass

type objects.

4.3.1 Behavior Class Methods

There are no class methods defined for the Behavior class.

4.3.2 Behavior Instance Methods

Behavior’s instance methods define the default behavior common to all Class and
MetaClass type objects.

[Alloc]Alloc::Behavior

obj = gAlloc(cls);

object cls;

object obj;

This method creates instances of class type objects. The returned value is an instance
of class cls. All instance variables in the obj object are initialized to NULL or 0.

This method works exactly like New::Behavior except that it is not normally re-
defined by subclasses. Alloc is strictly used to allocate new instances without also
initializing them. Init::Object would be defined and called to initialize the object.
Conceptually, New::Behavior should be equivalent to calling Alloc and Init.

Example:

object x;

x = gInit(gAlloc(MyClass));

See also: Init::Object, New::Behavior, StackAlloc macro

[DoesNotImplement]DoesNotImplement::Behavior

gDoesNotImplement(cls, gen);

object cls;

object gen;

This method is used to issue an error message when there is an attempt to execute a
generic function (gen) for class cls. The message prints to standard error (stderr)
and exits the program.

Example:

gDoesNotImplement(MyClass, Generic(MyGeneric));

Chapter 4: Kernel Reference 99

See also: RespondesTo, InvalidObject::Method

[DontCollect]DontCollect::Behavior

obj = gDontCollect(cls);

object cls;

object obj;

This method is used to turn garbage collection off for a single class of objects. It
doesn’t effect any of its superclasses or subclasses and has no effect of garbage collec-
tion is not being used. It returns cls.

Example:

gDontCollect(ShortInteger);

[FindMethod]FindMethod::Behavior

meth = gFindMethod(cls, gen, lev)

object cls; /* class */

object gen; /* the generic object */

int lev; /* search level */

object (*meth)(); /* method */

This method may be used to find the correct method associated with a particular
generic–class combination. gen is the generic function object (not a pointer to the
generic function). cls is the class where the search should start and lev tells whether
this is a regular or superclass type search. 1 is regular and 2 indicates a superclass
search.

A pointer to the C function which implements the method is returned. If no method
is found NULL is returned.

There also exists a function named _FindMethod which works similar to gFindMethod
except it issues an error message if no method is found. _FindMethod is the one which
does all the work to find the correct method associated with a particular generic–class
combination when executing generics.

FindMethod should not be called by an application. The relevant macros should be
used instead.

There is a similar method called FindMethodObject::Behavior which returns the
method object instead of the C function pointer which implements the method.

See also: imcPointer, cmcPointer, imiPointer, cmiPointer, iSuper,

RespondsTo, cSuper,

DoesNotImplement::Behavior, FindMethodObject::Behavior

100 Dynace Manual

[FindMethodObject]FindMethodObject::Behavior

meth = gFindMethodObject(cls, gen, lev)

object cls; /* class */

object gen; /* the generic object */

int lev; /* search level */

object meth; /* method */

This method may be used to find the correct method associated with a particular
generic–class combination. gen is the generic function object (not a pointer to the
generic function). cls is the class where the search should start and lev tells whether
this is a regular or superclass type search. 1 is regular and 2 indicates a superclass
search.

This method return the method object found. If no method is found NULL is returned.

There is a similar method called FindMethod::Behavior which returns the C function
which implements the method instead of the method object.

See also: FindMethod::Object, Generic

[InstanceSize]InstanceSize::Behavior

is = gInstanceSize(cls)

object cls; /* class */

int is; /* instance size */

This method is used to obtain the total size a direct instances of class cls would be.
This includes space used by the instance variables defined in class cls as well as all
the superclasses of cls.

See also: BasicSize::Object, StackAlloc::Behavior

[IsKindOf]IsKindOf::Behavior

r = gIsKindOf(cls1, cls2);

object cls1, cls2;

int r;

This method is used to determine if class cls2 is a superclass of cls1. If so a 1 is
returned and 0 otherwise. A 1 will also be returned if cls1 is the same class as cls2.

Chapter 4: Kernel Reference 101

Example:

int c;

c = gIsKindOf(ShortInteger, Object); /* c == 1 */

c = gIsKindOf(ShortInteger, LongInteger); /* c == 0 */

c = gIsKindOf(Dictionary, Set); /* c == 1 */

c = gIsKindOf(Dictionary, LinkList); /* c == 0 */

See also: IsKindOf::Object, IsInstanceOf, ClassOf

[MarkingMethod]MarkingMethod::Behavior

obj = gMarkingMethod(cls, fun);

object cls;

object (*fun)(cls);

object obj;

This method is used to specify an additional marking method to be used by the
garbage collector. It should only be needed in extremely special cases. After the
garbage collector marks all used objects it checks for any classes which have a spe-
cial marking method. The special marking method would normally mark additional
objects which are accessed in a very unusual way.

See also: MarkRange::Dynace, MarkObject::Dynace,

RegisterMemory::Dynace

[Name]Name::Behavior

name = gName(cls);

object cls;

char *name;

This method is used to obtain the name of a given class type object.

Example:

char *name;

name = gName(ShortInteger);

/* name now points to: "ShortInteger" */

102 Dynace Manual

[New]New::Behavior

obj = gNew(cls);

or

obj = vNew(cls);

object cls;

object obj;

This is the method which creates instances of class type objects. The returned value
is an instance of class cls. All New methods call this method. All instance variables
in the obj object are initialized to NULL or 0. This method is often redefined in
particular classes so that instance variables may be set to appropriate initial values.

Both gNew and vNew are associated with this method.

Example:

object x;

x = gNew(LinkList);

See also: Alloc::Behavior, Init::Object, StackAlloc macro

[StackAlloc]StackAlloc::Behavior

obj = gStackAlloc(cls, ptr);

object cls;

void *ptr;

object obj;

This method is used to turn arbitrary storage pointed to by ptr into an instance of
cls. The storage is assumed to be large enough (the value returned by
InstanceSize::Behavior). The object returned will function as a normal object
except that when it is disposed (via gDispose, etc.) no actual freeing of the object
will occur. However, user defined disposal code will be utilized.

This facility is currently only used to allocate objects from the stack. The cover
macro, StackAlloc, should be used instead of this method.

See also: StackAlloc macro, InstanceSize::Behavior

Chapter 4: Kernel Reference 103

[StringRep]StringRep::Behavior

s = gStringRep(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
object i and its value. The String contains the name of the class, and its address. It
then calls the StringRepValue method to obtain its contents. This is often used to
print or display a representation of a class object. It is also used by by Print::Object
(a method useful during the debugging phase of a project) in order to directly print
an object to a stream.

See also: Print::Object, PrintValue::Object, StringRepValue::Link

[StringRepValue]StringRepValue::Behavior

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

See also: PrintValue::Object, Print::Object

[SubClasses]SubClasses::Behavior

lst = gSubClasses(cls);

object cls;

object lst;

This method is used to obtain a list of all the direct subclasses of class cls. The list
returned is an instance of LinkObject.

Use gDispose1() on the list when no longer needed.

Example:

object lst;

lst = gSubClasses(ShortInteger);

104 Dynace Manual

See also: SuperClasses::Behavior

[SuperClasses]SuperClasses::Behavior

lst = gSuperClasses(cls);

object cls;

object lst;

This method is used to obtain a list of all the direct superclasses of class cls. The
list returned is an instance of LinkObject.

Use gDispose1() on the list when no longer needed.

Example:

object lst;

lst = gSuperClasses(ShortInteger);

See also: SubClasses::Behavior

[Trace]Trace::Behavior

pm = gTrace(cls, mode)

object cls; /* class */

int mode; /* trace mode */

int pm; /* previous trace mode */

This method is used to set the trace mode associated with a particular class (cls).
This mode only has an effect when the Dynace tracing facility is activated (via
Trace::Dynace). The possible settings (defined in dynl.h) are as follows:

DYNACE_TRACE_DONT_CARE OK to trace this class if a related

method or generic has tracing turned

on (default)

DYNACE_TRACE_OFF Turn all tracing related to this

class off

DYNACE_TRACE_ON Activate tracing for this class

The value returned is the previous trace mode in effect. See the section on tracing
(under Dynace Customization & Special Techniques) for more information.

Example:

gTrace(Set, DYNACE_TRACE_ON); /* turn tracing on for Set */

Chapter 4: Kernel Reference 105

See also: Trace::Dynace, TracePrint::Dynace, Trace::GenericFunction,

Trace::Method

106 Dynace Manual

4.4 Class Class

The Class Class is mainly used for the creation of new class objects.

4.4.1 Class Class Methods

The only class methods in the class Class are used to create new class objects and find
class objects.

[FindClass]FindClass::Class

cls = gFindClass(Class, cname)

char *cname; /* the name of the class */

object cls; /* The class found */

This method is used to find a class object from its name. The requested class is
returned or NULL if it doesn’t exist.

Example:

object cls;

cls = gFindClass(Class, "Set");

[GetAll]GetAll::Class

cl = gGetAll(Class);

object cl; /* LinkObject of all class objects */

This method is used to get a linked list (of type LinkObject) of all the class objects
(classes). It is useful for enumerating through all the class objects. Once a class
object is obtained, it can be used to obtain information about the class.

Once cl is no longer needed it is important that it is disposed with gDispose and
not gDeepDispose. Use of gDeepDispose on cl will dispose of all the class objects
in the system and crash it.

See also: GetAll::Class

Chapter 4: Kernel Reference 107

[NewClass]NewClass::Class

cls = gNewClass(Class, cname, ivsize, cvsize, superClasses...)

char *cname; /* the name of the new class */

int ivsize; /* the size of the instance variables in

the new class */

int cvsize; /* the size of the class variables */

object superClasses; /* an END terminated list of

superclasses */

object cls; /* The new class being created */

This method is used to create new classes. It automatically creates the class object,
the metaclass object associated with the new class object and sets up all the necessary
internal pointers and data structures.

The name parameter is the name associated with the new class. The metaclass created
will have the same name with “meta” prepended to the name.

The ivsize parameter defines the size of the locally declared instance variables as-
sociated with the new class. If there are no local instance variables 0 should be
used.

The cvsize parameter is used to declare the size of the locally defined class variables
associated with the new class. If there are no locally defined class variables 0 should
be used, otherwise, the size of the class variable structure should be used.

The remainder of this method’s arguments define the superclasses the new class will
have. The last argument must be END. If no superclasses are defined the single class
Object will be the default superclass. The order of the superclasses will determine
the method lookup order.

Example:

object NewClass;

NewClass = gNewClass(Class, ShortInteger, END);

See also: NewStdClass::Class

108 Dynace Manual

[NewStdClass]NewStdClass::Class

cls = gNewStdClass(Class, cname, ivsize, mclass, nipib,

sCls...)

char *cname; /* the name of the new class */

int ivsize; /* the size of the instance variables in

the new class */

object mclass; /* the metaclass of the new class */

int nipib; /* number of instances per instance block */

object sCls; /* an END terminated list of

superclasses */

object cls; /* The new class being created */

This method is used to create new classes. Unlike NewClass::Class, which au-
tomatically creates a corresponding metaclass (like Smalltalk – more convenient),
NewStdClass::Class creates single independent classes with the ability to set the
metaclass (like CLOS – more powerful but more cumbersome to use).

The name parameter is the name associated with the new class.

The ivsize parameter defines the size of the locally declared instance variables as-
sociated with the new class. If there are no local instance variables 0 should be
used.

The mclass parameter is used to set the class of the newly created class. This is the
class which defines the behavior and characteristics of the newly created class. Note
that any number of classes may share the same metaclass. This adds a great deal of
power to the meta-language aspects of the system.

For efficiency reasons Dynace does not allocate memory for objects one at a time.
They are allocated in blocks which are measured by the number of instances per
block of memory. This factor may be specified by the use of the nipib parameter.
When creating a class which will have many small instances used it is best to have
nipib high (~50). However, if the instances are large and there will only be a few of
them 1 would be a good choice. The use of 0 will cause the system to estimate an
appropriate value based on the instance size.

The remainder of this method’s arguments define the superclasses the new class will
have. The last argument must be END. If no superclasses are defined the single class
Object will be the default superclass. The order of the superclasses will determine
the method lookup order.

See also: NewClass::Class

4.4.2 Class Instance Methods

The class Class has no instance methods.

Chapter 4: Kernel Reference 109

4.5 MetaClass Class

All metaclasses in the system are instances of the class MetaClass. Since all metaclasses
are instances of the MetaClass class, and all class objects are instances of their associated
metaclasses, the MetaClass class is the heart of the Dynace class system. The MetaClass

class has no class or instance methods.

110 Dynace Manual

4.6 Method Class

The Method class gives Dynace the ability to represent methods (static C language functions)
as true objects. The principal use of this class is to create new methods.

4.6.1 Method Class Methods

There is only one class method associated with the Method class and it is used for the
creation of new methods.

[NewMethod]NewMethod::Method

method = gNewMethod(Method, name, cls, gen, cf, ff)

char *name; /* the name of the new method */

object cls; /* the class associated with the method */

object gen; /* the generic associated with the method */

object (*cf)();/* the C function which implements

the method */

object (*ff)();/* the C function which implements

the method - fixed args */

object method; /* the new method object */

This method is used to create a new method object. The new method object asso-
ciates a class object, a generic object, and a C function. The macros iMethodFor,
ivMethodFor, cMethodFor, cvMethodFor provide the normal access to this method.
See those macros for a full description.

See also: iMethodFor, ivMethodFor, cvMethodFor, cMethodFor

4.6.2 Method Instance Methods

The instances methods associated with this class are used to obtain information about a
method object.

[ChangeFunction]ChangeFunction::Method

ofun = gChangeFunction(m, nfun);

object m;

object (*nfun)();

object (*ofun)();

This method is used to change the C function associated with a method object to
nfun. The old C function pointer is returned.

See also: FindMethodObject::Behavior, Function::Method

Chapter 4: Kernel Reference 111

[Function]Function::Method

fun = gFunction(m);

object m;

object (*fun)();

This method is used to obtain the C function associated with a method object.

See also: FindMethodObject::Behavior,
ChangeFunction::Method

[Name]Name::Method

name = gName(m);

object m;

char *name;

This method is used to obtain the name of a given method type object.

See also: FindMethodObject::Behavior

[Trace]Trace::Method

pm = gTrace(mth, mode)

object mth; /* method object */

int mode; /* trace mode */

int pm; /* previous trace mode */

This method is used to set the trace mode associated with a particular method
(mth). This mode only has an effect when the Dynace tracing facility is activated
(via Trace::Dynace). The possible settings (defined in dynl.h) are as follows:

DYNACE_TRACE_DONT_CARE OK to trace this method if a

related generic or class has tracing

turned on (default)

DYNACE_TRACE_OFF Turn all tracing related to this

method off

DYNACE_TRACE_ON Activate tracing for this method

The value returned is the previous trace mode in effect. See the section on tracing
(under Dynace Customization & Special Techniques) for more information.

112 Dynace Manual

Example:

object mth;

mth = gFindMethodObject(Set, Generic(gRemove), 1);

/* turn tracing on for Remove::Set */

gTrace(mth, DYNACE_TRACE_ON);

See also: Trace::Dynace, TracePrint::Dynace,

FindMethodObject::Behavior, Generic,

Trace::Behavior, Trace::GenericFunction

Chapter 4: Kernel Reference 113

4.7 GenericFunction Class

The GenericFunction class gives Dynace the ability to represent generic functions (C
language functions) as true objects. The principal use of this class is to create new generic
function objects.

4.7.1 GenericFunction Class Methods

The class methods in this class are used to create new generic objects and obtain a list of
all generics.

[FindGeneric]FindGeneric::GenericFunction

gf = gFindGeneric(GenericFunction, name);

char *name; /* name of generic function to find */

object gf; /* GenericFunction object associated with name */

This method is used to obtain the generic function object named name. The generic
function object is returned unless it is not found, in that case a NULL is returned.

See also: GetAll::GenericFunction

[GetAll]GetAll::GenericFunction

gf = gGetAll(GenericFunction);

object gf; /* LinkObject of all generic function objects */

This method is used to get a linked list (of type LinkObject) of all the generic objects.
It is useful for enumerating through all the generic objects. Once a generic object is
obtained, it can be used to obtain information about the generic.

Once gf is no longer needed it is important that it is disposed with gDispose and
not gDeepDispose. Use of gDeepDispose on gf will dispose of all the generic objects
in the system and crash it.

See also: GetAll::Class, FindGeneric::GenericFunction

[NewGeneric]NewGeneric::GenericFunction

gf = gNewGeneric(GenericFunction, name, fp);

char *name; /* the name of the new generic function */

object gf; /* the new generic function object */

void *fp; /* pointer to generic function */

114 Dynace Manual

This method is used to create a new generic function object. The generic function ob-
ject is used to store the relationship between classes, generics and methods. Normally,
all generics are created in a single file called “generics.c”. All external declarations for
the generics are kept in a file called “generics.h”. These files are created automatically
by the dpp program from the class documentation.

The macros InitGeneric, defGeneric, externGeneric provide the normal access
to this method and the generic function object in general.

See also: dpp, defGeneric, externGeneric, InitGeneric,

GetGenericPtr::GenericFunction

4.7.2 GenericFunction Instance Methods

GenericFunction instance methods define the behavior of all generic functions.

[GetGenericPtr]GetGenericPtr::GenericFunction

gfp = gGetGenericPtr(gf);

object gf; /* a GenericFunction object */

void *gfp; /* pointer to the generic function

associated with gf */

This method is used to get a pointer to the generic function associated with a generic
object. gfp must be correctly typecast prior to use.

See also: Generic, GetAll::GenericFunction

[InvalidObject]InvalidObject::GenericFunction

gInvalidObject(gf, argn, arg1);

object gf; /* the generic function object */

int argn; /* argument number */

object arg1; /* the first argument to generic */

This method is used to report the case when a generic is passed an argument which
is not a valid object. After generation of the error message it calls Error::Object
to report the error and abort the program. It is normally called automatically by a
generic or by the use of one of the ChkArg macros.

See also: ChkArg, InvalidType::GenericFunction, Error::Object

Chapter 4: Kernel Reference 115

[InvalidType]InvalidType::GenericFunction

gInvalidType(gf, argn, arg1, cls, arg);

object gf; /* the generic function object */

int argn; /* argument number */

object arg1; /* the first argument to generic */

object cls; /* type of object expected */

object arg; /* the argument which is bad */

This method is used to report the case when a generic is passed an argument which
is not the expected type. It passes the error message to Error::Object which prints
the message and aborts the program. It is normally called via one of the ChkArg type
macros.

See also: ChkArg, InvalidObject::GenericFunction, Error::Object

[Name]Name::GenericFunction

name = gName(g);

object g;

char *name;

This method is used to obtain the name of a given generic function type object.

Example:

char *name;

name = gName(Generic(vNew));

/* name now points to: "vNew" */

See also: Generic

[Trace]Trace::GenericFunction

pm = gTrace(gf, mode)

object gf; /* generic function object */

int mode; /* trace mode */

int pm; /* previous trace mode */

This method is used to set the trace mode associated with a particular generic function
(gf). This mode only has an effect when the Dynace tracing facility is activated (via
Trace::Dynace). The possible settings (defined in dynl.h) are as follows:

116 Dynace Manual

DYNACE_TRACE_DONT_CARE OK to trace this generic if a

related method or class has tracing

turned on (default)

DYNACE_TRACE_OFF Turn all tracing related to this

generic off

DYNACE_TRACE_ON Activate tracing for this generic

The value returned is the previous trace mode in effect. See the section on tracing
(under Dynace Customization & Special Techniques) for more information.

Example:

/* turn tracing on for vNew */

gTrace(Generic(vNew), DYNACE_TRACE_ON);

See also: Generic, Trace::Dynace, TracePrint::Dynace,

Trace::Behavior, Trace::Method

Chapter 4: Kernel Reference 117

4.8 Dynace Class

The Dynace Class is used to affect various parameters which control the internal operation
of the Dynace kernel. The user may control whether the garbage collector is activated or
not and what parameters it is running under. You may also control such things as the size
of the method cache. All operations performed through this class are performed by sending
messages directly to the Dynace class. There are no instance methods.

4.8.1 Dynace Class Methods

All functionality of the Dynace class is accessed through it’s class methods.

[ChangeRegisteredMemory]ChangeRegisteredMemory::Dynace

rmp = gChangeRegisteredMemory(Dynace, rmp, beg, size)

void *rmp; /* registered memory pointer */

void *beg; /* pointer to beginning of region */

long size; /* size of region */

This method is used to change the memory region associated with a memory region
pointer. rmp must have been a pointer returned by gRegisterMemory.

Example:

static object a, b;

void *rmp;

rmp = gRegisterMemory(Dynace, &a, (long) sizeof(a));

.

.

.

gChangeRegisteredMemory(Dynace, rmp, &b, (long) sizeof(b));

See also: RegisterMemory::Dynace, GC::Dynace

[CurMemUsed]CurMemUsed::Dynace

cmu = gCurMemUsed(Dynace)

long cmu; /* current memory used */

This method is used to obtain the current amount of storage being used by Dynace
objects. This number increases every time a new object is created, and decreases
every time an object is disposed.

118 Dynace Manual

Example:

long cmu;

cmu = gCurMemUsed(Dynace);

See also: MaxMemUsed::Dynace, GC::Dynace, DumpObjects::Dynace

[DumpMemoryDiff]DumpMemoryDiff::Dynace

c = gDumpMemoryDiff(Dynace, start, fileName)

object c; /* the Dynace class */

object start; /* value returned from gMarkMemoryBeginning::Dynace */

char *fileName; /* the name of the file to dump the list to */

This method is used in conjunction with gMarkMemoryBeginning to find memory
leaks. A list of all remaining objects between the call to gMarkMemoryBeginning
and gDumpMemoryDiff.

Typically, one would call gMarkMemoryBeginning, run your normal code including
calls to dispose of objects no longer needed, and then call gDumpMemoryDiff to see
what objects remain after all of the dispose calls. Those are your leaks.

Note that start should be DeepDisposed when it is no longer needed. Also, these
two methods should normally be used rather than DumpObjects.

Example:

object start = gMarkMemoryBeginning(Dynace);

...

gDumpMemoryDiff(Dynace, start, "MyMemDump.txt");

gDeepDispose(start);

See also: MarkMemoryBeginning::Dynace

[DumpObjects]DumpObjects::Dynace

c = gDumpObjects(Dynace, file, mc)

object c; /* the Dynace class */

char *file; /* file to dump object list on */

int mc; /* 0=no metaclasses, 1=metaclasses too */

This method is used to dump a list of all Dynace objects in a human readable for-
mat into the file named by file. The mc flag is used to determine whether or not
metaclasses are included in the dump.

Chapter 4: Kernel Reference 119

This method is mainly used to find leaks in an application. Typically, a body of code
would be run, then an object dump performed, then run again, and finally a second
object dump to another file is performed. The two dump files would then be sorted
and diff’ed. A list of object leaks would result.

Example:

gDumpObjects(Dynace, "objects.lst", 0);

See also: MarkMemoryBeginning::Dynace, DumpObjectsString::Dynace,

MaxMemUsed::Dynace, GC::Dynace

[DumpObjectsDiff]DumpObjectsDiff::Dynace

sd = gDumpObjectsDiff(Dynace, d1, d2)

object d1, d2; /* values from gDumpObjectsString */

object sd; /* StringDictionary instance */

This method is used to create a string dictionary representing the difference between
two calls to gDumpObjectsString. The string is the name of the class and the value
is an instance of LongInteger which represents the number of instances different.

This method is mainly used to find leaks in an application. Typically, a body of code
would be run, then an object dump performed, then run again, and finally a second
object dump is performed. The two dump string dictionaries would then be compared
using gDumpObjectsDiff. A list of object leaks would result.

Example:

object d1, d2, diff;

d1 = gDumpObjectsString(Dynace, 0);

.

.

.

d2 = gDumpObjectsString(Dynace, 0);

diff = gDumpObjectsDiff(Dynace, d1, d2);

See also: MarkMemoryBeginning::Dynace, DumpObjectsString::Dynace,

DumpObjects::Dynace

120 Dynace Manual

[DumpObjectsString]DumpObjectsString::Dynace

sd = gDumpObjectsString(Dynace, mc)

int mc; /* 0=no metaclasses, 1=metaclasses too */

object sd; /* StringDictionary instance */

This method is used to create a string dictionary representing all Dynace objects
in the system. The string is the name of the class and the value is an instance
of LongInteger which represents the number of instances. The mc flag is used to
determine whether or not metaclasses are included in the list.

This method is mainly used to find leaks in an application. Typically, a body of code
would be run, then an object dump performed, then run again, and finally a second
object dump is performed. The two dump string dictionaries would then be compared
using gDumpObjectsDiff. A list of object leaks would result.

See also: MarkMemoryBeginning::Dynace, DumpObjectsDiff::Dynace,

DumpObjects::Dynace

[GC]GC::Dynace

c = gGC(Dynace)

object c; /* the Dynace class */

This method is used to force the Dynace system to perform a garbage collection. All
inaccessible objects will be collected and made available for reuse. This method is
not normally used because the Dynace system will automatically start the garbage
collector when necessary (if turned on via the SetMemoryBufferArea method).

Example:

gGC(Dynace);

See also: SetMemoryBufferArea::Dynace, RegisterMemory::Dynace,

DumpObjects::Dynace, NumbGC::Dynace

[MarkMemoryBeginning]MarkMemoryBeginning::Dynace

start = gMarkMemoryBeginning(Dynace)

object start;

This method is used in conjunction with gDumpMemoryDiff to find memory leaks. A
list of all remaining objects between the call to gMarkMemoryBeginning and gDump-
MemoryDiff.

Chapter 4: Kernel Reference 121

Typically, one would call gMarkMemoryBeginning, run your normal code including
calls to dispose of objects no longer needed, and then call gDumpMemoryDiff to see
what objects remain after all of the dispose calls. Those are your leaks.

Note that start should be DeepDisposed when it is no longer needed. Also, these
two methods should normally be used rather than DumpObjects.

Example:

object start = gMarkMemoryBeginning(Dynace);

...

gDumpMemoryDiff(Dynace, start, "MyMemDump.txt");

gDeepDispose(start);

See also: DumpMemoryDiff::Dynace

[MaxAfterGC]MaxAfterGC::Dynace

mem = gMaxAfterGC(Dynace)

long mem; /* maximum memory used */

This method is used to obtain the maximum memory that was in use immediately
after the last garbage collection. If no garbage collection has taken place the returned
value will represent the current memory usage. The value of this number is that
the amount of storage between the current memory usage and this number is consid-
ered potential garbage and used (internally) by Dynace to help determine when an
automatic garbage collection should occur.

Example:

long mem;

mem = gMaxAfterGC(Dynace);

See also: MaxMemUsed::Dynace, CurMemUsed::Dynace, GC::Dynace

[MaxMemUsed]MaxMemUsed::Dynace

mem = gMaxMemUsed(Dynace)

long mem; /* maximum memory used */

This method is used to obtain the maximum memory that was used by the system
during the entire run of the application.

122 Dynace Manual

Example:

long mem;

mem = gMaxMemUsed(Dynace);

See also: MaxAfterGC::Dynace, CurMemUsed::Dynace, GC::Dynace,

DumpObjects::Dynace

[NumbGC]NumbGC::Dynace

ngc = gNumbGC(Dynace)

long ngc; /* maximum memory used */

This method is used to obtain the total number of times the garbage collector ran
during the entire run of the application.

Example:

long ngc;

ngc = gNumbGC(Dynace);

See also: MaxAfterGC::Dynace, CurMemUsed::Dynace, GC::Dynace

[ObjectChecking]ObjectChecking::Dynace

c = gObjectChecking(Dynace, flag)

int flag; /* 1=on, 0=off */

object c; /* the Dynace class */

Since the first argument to all generics is the Dynace object which is being sent the
message, the first argument to all generics must always be a valid Dynace object.
Whenever a generic is called Dynace verifies that the first argument is in fact a valid
Dynace object. If it is not Dynace will issue an error message and abort the program.
This is a fatal error.

There is a runtime overhead associated with this check. It’s very similar to the
stack checking which some C compilers perform at runtime. Once a program is
sufficiently debugged it is possible to turn this runtime checking off in order to achieve
maximum performance. Turning the checking off is, however, not recommended. If an
untested portion of code which contains a bug is executed and the checking is off very
unpredictable results will occur. It’s very similar to dereferencing an uninitialized
pointer in C.

Chapter 4: Kernel Reference 123

There are techniques to totally eliminate the runtime overhead associated with object
validation and method lookup within Dynace. See the text.

By default Dynace has object checking turned on. The ObjectChecking method may
be called at arbitrary points in a program to turn the checking on or off. A flag

value of 1 turns checking on and a value of 0 turns it off.

Example:

gObjectChecking(Dynace, 0);

See also: ChkArg

[RegisterMemory]RegisterMemory::Dynace

rmp = gRegisterMemory(Dynace, beg, size)

void *beg; /* beginning of registered memory */

long size; /* size of region */

void *rmp; /* registered memory pointer */

The Dynace garbage collector uses the C stack in order to determine which objects
are still accessible, either directly or indirectly, by the program and need to be saved.
All remaining objects will be collected and returned to the free store. This scheme
allows Dynace to automatically handle objects which are being referenced, directly
or indirectly, by automatic variables and function parameters.

Dynace has no way of knowing about objects which are referenced by global and static
variables or objects which are being referenced by memory allocated from the heap.
If an objects is only being referenced by one of these methods Dynace will dispose of
it the next time the garbage collector is called. If the program later tries to use the
object an error will occur. The solution to this problem is to register these memory
regions with Dynace.

The beg parameter specifies the address of the beginning of the region which needs
to be protected. The size parameter specifies the size in bytes of the region.
RegisterMemory returns a pointer which may be used to un-register the region at a
later time.

The RegisterVariable macro provides a convenient interface to protect global and
static variables.

If the Dynace garbage collector is not being used there is no need to register any
memory regions.

124 Dynace Manual

Example:

static object a, b;

gRegisterMemory(Dynace, &a, (long) sizeof(a));

RegisterVariable(b);

See also: GC::Dynace, RemoveRegisteredMemory::Dynace,

ChangeRegisteredMemory::Dynace

[RemoveRegisteredMemory]RemoveRegisteredMemory::Dynace

gRemoveRegisteredMemory(Dynace, rmp)

void *rmp; /* registered memory pointer */

This method is used to remove a memory region from those registered with the Dynace
system. The rmp parameter must be a pointer which was obtained from a call to
gRegisterMemory. Once this method is called the specified region of memory will no
longer be protected from the garbage collector.

Example:

static object a, b;

void *rmpa, *rmpb;

rmpa = gRegisterMemory(Dynace, &a, (long) sizeof(a));

rmpb = RegisterVariable(b);

.

.

.

gRemoveRegisteredMemory(Dynace, rmpa);

gRemoveRegisteredMemory(Dynace, rmpb);

See also: RegisterMemory::Dynace, ChangeRegisteredMemory::Dynace,

GC::Dynace

[ResizeMethodCache]ResizeMethodCache::Dynace

c = gResizeMethodCache(Dynace, nClasses, nGenerics)

int nClasses; /* size of class cache table */

int nGenerics; /* size of generic cache table */

object c; /* the Dynace class */

Chapter 4: Kernel Reference 125

The first time a particular method is evoked it must be searched for as described
elsewhere in this manual. This is a time consuming process. It is, however, necessary
for this process to occur at runtime in order to obtain the true benefit of Object
Oriented Programming. C++, Objective–C, and Smalltalk all perform this search
when using their dynamic binding capabilities.

Once the appropriate method is found it is placed in a fast cache automatically
maintained by Dynace. This cache is designed such that it never overflows. It just
grows on an as-needed basis. Therefore, once a correct method is found it will never
be searched for again. All future messages to that particular method will be found in
the cache.

When Dynace is initialized a default cache is established. Under normal circumstances
you may never need to be concerned with the cache at all. However, under conditions
where there are a very large number of classes or generics it may be beneficial to
enlarge the cache table sizes.

If the cache size is to be changed the best place to do it is immediately after the
initialization of Dynace. You could, however, change the cache size at any point at
the one time cost of some additional CPU time.

The nClasses parameter should be set to some number larger than the total number
of classes in your program. The nGenerics parameter should also be set to some
number larger than the number of generics in the program. These numbers may be
set lower than the number of classes and/or generics in order to save memory at the
relatively low cost of runtime speed. Since the cache is implemented as a hash table
choosing numbers that are prime is best. Choosing odd numbers is good too.

There are techniques to totally eliminate the runtime overhead associated with object
validation and method lookup within Dynace. See the text.

Example:

gResizeMethodCache(Dynace, 101, 203);

[SetMemoryBufferArea]SetMemoryBufferArea::Dynace

c = gSetMemoryBufferArea(Dynace, size)

long size; /* size of buffer area */

object c; /* the Dynace class */

This method is used to activate and control the automatic operation of the Dynace
garbage collector. When Dynace is first started the default memory buffer area is set
to -1. This value indicates that Dynace should not automatically start the garbage
collector.

If the value of size is positive then Dynace will automatically start the garbage
collector every time the program creates enough new objects to exceed the storage
specified by the size parameter (in bytes). Dynace will automatically adjust its heap

126 Dynace Manual

storage requirements based on the size parameter and the storage history of the
application program.

The actual value of size must be determined experimentally. A typical starting place
would be about 40000. The higher the value of size the less frequently the garbage
collector will be started but the longer it will take to run. The lower the value of
size the more often the garbage collector will run but also the faster. The garbage
collector is very fast and you will probably not notice much of a difference for a wide
range of size.

The typical storage Dynace requires to support this facility is roughly equal to the
maximum storage of all the active objects in the application at any given time plus
the value of the size parameter. Therefore, making size unnecessarily large would
be wasteful.

Note that the size parameter must be of type long.

Example:

gSetMemoryBufferArea(Dynace, 40000L);

See also: GC::Dynace, RegisterMemory::Dynace

[Trace]Trace::Dynace

pm = gTrace(Dynace, mode)

int mode; /* trace mode */

int pm; /* previous trace mode */

This class method is used to set the global trace mode of the Dynace system. The
possible settings (defined in dynl.h) are as follows:

DYNACE_TRACE_OFF Turn all tracing off (default setting)

DYNACE_TRACE_ON Trace objects which are activated for

tracing

DYNACE_TRACE_ALL Trace all except those explicitly

deactivated

The value returned is the previous trace mode in effect. See the section on tracing
(under Dynace Customization & Special Techniques) for more information.

Example:

gTrace(Dynace, DYNACE_TRACE_ON); /* turn tracing on */

Chapter 4: Kernel Reference 127

See also: TracePrint::Dynace, Trace::Behavior,

Trace::GenericFunction, Trace::Method

[TracePrint]TracePrint::Dynace

c = gTracePrint(Dynace, msg)

char *msg; /* trace output message */

object c; /* the Dynace class */

This class method is used to output trace messages and is called by the Dynace
internal tracing functions. This method simply outputs msg to traceStream. It is
documented here in case there is a need to override it.

See the section on tracing (under Dynace Customization & Special Techniques) for
more information.

See also: traceStream::Stream, Trace::Dynace, Trace::Behavior,

Trace::GenericFunction, Trace::Method

4.8.2 Dynace Instance Methods

There are no instance methods associated with the Dynace class.

128 Dynace Manual

4.9 Kernel Macros

Dynace has a number of macros to simplify the creation and usage of objects. These macros
are all defined in the file dynl.h. The following text describe each macro.

[accessIVs]accessIVs

accessIVs;

This macro is used to access the instance variables from within an instance method. It
may be used anywhere within the variable declaration section of a normal C function.
accessIVs actually declares a local variable named iv and initializes it to a pointer
to the instance variable structure. Once accessIVs is called the local variable iv may
be used to access all the locally defined instance variables in the class being defined
in the current file.

accessIVs uses the variable named self to determine which object to obtain instance
variables for. See ivPtr to access instance variables for other variables.

If an instance method makes only a single access to its instance variables the use of
the ivsPtr macro would be better suited.

Note that it is rarely ever necessary to explicitly use the accessIVs macro due to
the fact the the Dynace preprocessor (dpp) automatically adds this code when pre-
processing the class definition file.

Example:

defclass {

char name[30];

int age;

};

imeth void PrintInstances(object self, FILE *fp)

{

accessIVs;

fprintf(fp, "%s is %d years old\n", iv->name, iv->age);

}

See also: ivsPtr, ivPtr, ivType, GetIVs

[ChkArg]ChkArg

ChkArg(arg, argn);

object arg; /* the argument to be checked */

int argn; /* the argument number */

Chapter 4: Kernel Reference 129

This macro provides a convenient way of validating method arguments. If arg is not
a valid Dynace object a meaningful error message will be displayed and the program
will be aborted. argn is used in the error message to tell which argument caused the
problem.

The argument checking properties of this macro may be enabled / disabled via the
gObjectChecking generic. It defaults to ON.

Since Dynace automatically checks the first argument to all generics (if argument
checking is on) there is never a need to manually check the first argument. ChkArg

would only be needed for arguments beyond the first.

ChkArg may only be used as the first executable statements in a method (prior to any
other generic calls).

Example:

imeth object MyMethod(object self, object arg2, object arg3)

{

accessIVs;

ChkArg(arg2, 2);

ChkArg(arg3, 3);

.

.

.

See also: ObjectChecking::Dynace, IsObj, IsKindOf::Object,

ChkArgTyp, ChkArgNul, ChkArgTypNul

[ChkArgNul]ChkArgNul

ChkArgNul(arg, argn);

object arg; /* the argument to be checked */

int argn; /* the argument number */

This macro provides a convenient way of validating method arguments. Unlike ChkArg
this will also permit an argument of NULL. If arg is not a valid Dynace object (or
NULL) a meaningful error message will be displayed and the program will be aborted.
argn is used in the error message to tell which argument caused the problem.

The argument checking properties of this macro may be enabled / disabled via the
gObjectChecking generic. It defaults to ON.

Since Dynace automatically checks the first argument to all generics (if argument
checking is on) there is never a need to manually check the first argument. ChkArgNul
would only be needed for arguments beyond the first.

130 Dynace Manual

ChkArgNul may only be used as the first executable statements in a method (prior to
any other generic calls).

Example:

imeth object MyMethod(object self, object arg2, object arg3)

{

accessIVs;

ChkArgNul(arg2, 2);

ChkArgNul(arg3, 3);

.

.

.

See also: ObjectChecking::Dynace, IsObj, IsKindOf::Object,

ChkArgTyp, ChkArg, ChkArgTypNul

[ChkArgTyp]ChkArgTyp

ChkArgTyp(arg, argn, type);

object arg; /* the argument to be checked */

int argn; /* the argument number */

object type; /* the expected class of arg */

This macro provides a convenient way of validating method arguments. If arg is not
a valid Dynace object a meaningful error message will be displayed and the program
will be aborted. argn is used in the error message to tell which argument caused the
problem.

type is used to specify the expected type of the argument. If arg is not an instance
of class type (or one of its subclasses) an error message will be displayed and the
program will be aborted. If no argument type checking is required type should be
passed a NULL and no type checking will be performed.

The argument checking properties of this macro may be enabled / disabled via the
gObjectChecking generic. It defaults to ON.

Since Dynace automatically checks the first argument to all generics (if argument
checking is on) there is never a need to manually check the first argument. ChkArgTyp
would only be needed for arguments beyond the first.

ChkArgTyp may only be used as the first executable statements in a method (prior to
any other generic calls).

Chapter 4: Kernel Reference 131

Example:

imeth object MyMethod(object self, object arg2, object arg3)

{

accessIVs;

ChkArgTyp(arg2, 2, String);

ChkArgTyp(arg3, 3, Set);

.

.

.

See also: ObjectChecking::Dynace, IsObj, IsKindOf::Object, ChkArg,

ChkArgNul, ChkArgTypNul

[ChkArgTypNul]ChkArgTypNul

ChkArgTypNul(arg, argn, type);

object arg; /* the argument to be checked */

int argn; /* the argument number */

object type; /* the expected class of arg */

This macro provides a convenient way of validating method arguments. Unlike
ChkArgTyp this will also permit an argument of NULL. If arg is not a valid Dy-
nace object (or NULL) a meaningful error message will be displayed and the program
will be aborted. argn is used in the error message to tell which argument caused the
problem.

type is used to specify the expected type of the argument. If arg is not an instance
of class type (or one of its subclasses) an error message will be displayed and the
program will be aborted. If no argument type checking is required type should be
passed a NULL and no type checking will be performed.

The argument checking properties of this macro may be enabled / disabled via the
gObjectChecking generic. It defaults to ON.

Since Dynace automatically checks the first argument to all generics (if argument
checking is on) there is never a need to manually check the first argument.
ChkArgTypNul would only be needed for arguments beyond the first.

ChkArgTypNul may only be used as the first executable statements in a method (prior
to any other generic calls).

132 Dynace Manual

Example:

imeth object MyMethod(object self, object arg2, object arg3)

{

accessIVs;

ChkArgTypNul(arg2, 2, String);

ChkArgTypNul(arg3, 3, Set);

.

.

.

See also: ObjectChecking::Dynace, IsObj, IsKindOf::Object, ChkArg,

ChkArgNul, ChkArgTyp

[ClassOf]ClassOf

c = ClassOf(obj);

object obj; /* an object */

object c; /* the class of the object */

This macro provides a very fast way of obtaining the class of any object. Since all
objects in Dynace (including classes) are also regular objects and since all objects are
instances of some class the ClassOf macro may be called repeatedly and indefinitely
for any Dynace object and you would always receive a valid object. This macro may
also be used to map any class hierarchy.

Example:

object a, b;

a = gNewWithInt(ShortInteger, 7);

b = ClassOf(a); /* b now contains ShortInteger */

See also: IsKindOf::Object, IsInstanceOf

[cmcPointer]cmcPointer

meth = cmcPointer(cls, gen);

object cls; /* the class */

object (*gen)(); /* generic function */

RTYPE (*meth)(); /* method */

Chapter 4: Kernel Reference 133

This macro returns the class method associated with class cls and generic function
gen. The normal runtime search is used to obtain the method. The process performed
by this macro accounts for all the additional runtime overhead associated with the
runtime binding of Dynace generic function usage. The method pointer returned may
be used as a normal C function pointer, thus nullifying all future runtime overhead
associated with dynamic binding. This macro may therefore be used to locally cache a
method and eliminate any runtime costs while retaining the full dynamic capabilities
of Dynace.

This macro correctly typecasts its returned pointer to agree with the associated
generic’s return type and argument list.

The use of this macro should be used sparingly. It is a little cumbersome to use
and, if not used with care, may defeat the dynamic nature and benefits of dynamic
binding. However, if used appropriately (in tight loops where efficiency is important),
this macro may be a valuable tool.

This macro returns a pointer to the C function which implements the method. NULL
is returned if no method is found.

Example:

vNew_t meth;

object vec[100];

int i;

meth = cmcPointer(ShortInteger, vNew);

for (i=0 ; i != 100 ;)

vec[i++] = meth(ShortInteger, 4);

/* or: vec[i++] = (*meth)(ShortInteger, 4); */

/* on old C compilers */

/* same as vec[i++] = gNewWithInt(ShortInteger, 4); */

/* except 0 runtime overhead in loop */

See also: cmiPointer, imiPointer, imcPointer, FindMethod::Behavior

[cmeth]cmeth

cmeth

This macro is used to label and introduce a C function which is to serve as a class
method. All it really does is declare the C function to be static, and therefore not
directly accessible externally to other source modules. It is important that all methods
be declared static to enforce the encapsulation and enable name space overloading.

134 Dynace Manual

Example:

cmeth object New(self)

object self;

{

...

}

See also: imeth, method

[cMethodFor]cMethodFor

meth = cMethodFor(cls, gen, cf);

object cls; /* class */

object (*gen)(); /* generic function */

object (*cf)(); /* C function */

object meth; /* method object */

This macro is used to associate a C function, which implements a class method, with
a generic function for class cls. It is normally only used within the class initialization
function associated with each class file.

This macro returns a Dynace object (an instance of the Method class) which represents
the C function which implements the method. Each Class and Generic object contains
a list of Method objects which it relates to so there is not normally a need to save
the returned value.

Example:

cMethodFor(MyClass, gNew, my_new);

See also: cvMethodFor, iMethodFor

[cmiPointer]cmiPointer

meth = cmiPointer(i, gen);

object i; /* the instance object */

object (*gen)(); /* generic function */

RTYPE (*meth)(); /* method */

This macro returns the class method associated with the class of instance i and
generic function gen. The normal runtime search is used to obtain the method. The
process performed by this macro accounts for all the additional runtime overhead
associated with the runtime binding of Dynace generic function usage. The method
pointer returned may be used as a normal C function pointer, thus nullifying all

Chapter 4: Kernel Reference 135

future runtime overhead associated with dynamic binding. This macro may therefore
be used to locally cache a method and eliminate any runtime costs while retaining
the full dynamic capabilities of Dynace.

This macro correctly typecasts its returned pointer to agree with the associated
generic’s return type and argument list.

The use of this macro should be used sparingly. It is a little cumbersome to use
and, if not used with care, may defeat the dynamic nature and benefits of dynamic
binding. However, if used appropriately (in tight loops where efficiency is important),
this macro may be a valuable tool.

This macro returns a pointer to the C function which implements the method. NULL
is returned if no method is found.

Example:

vNew_t meth;

object vec[100], x;

int i;

x = gNewWithInt(ShortInteger, 5);

/* normally x would have come from somewhere else */

meth = cmiPointer(x, vNew);

for (i=0 ; i != 100 ;)

vec[i++] = meth(ShortInteger, 4);

/* or: vec[i++] = (*meth)(ShortInteger, 4); */

/* on old C compilers */

/* same as vec[i++] = gNewWithInt(ShortInteger, 4); */

/* except 0 runtime overhead in loop */

See also: cmcPointer, imiPointer, imcPointer, FindMethod::Behavior

[cSuper]cSuper

meth = cSuper(cls, gen);

object cls; /* class */

RTYPE (*gen)(); /* generic function */

RTYPE (*meth)(); /* method */

This macro returns the superclass class method associated with the generic function
gen for class cls. If the method is not found the normal method search procedure
will be used.

RTYPE is the return type associated with the generic and macro in question. The
method pointer returned will be correctly typecast.

This macro has been superseded by oSuper.

136 Dynace Manual

Example:

cSuper(MyClass, vNew)(self); /* execute the superclass class

method associated with vNew

and pass it the single

argument self */

See also: oSuper, iSuper

[cvMethodFor]cvMethodFor

meth = cvMethodFor(cls, gen, cf, ff);

object cls; /* class */

object (*gen)(); /* generic function */

object (*cf)(); /* C function */

object (*ff)(); /* fixed C function */

object meth; /* method object */

This macro is used to associate a C function, which implements a class method, with
a generic function for class cls. It is normally only used within the class initialization
function associated with each class file.

This macro returns a Dynace object (an instance of the Method class) which represents
the C function which implements the method. Each Class and Generic object contains
a list of Method objects which it relates to so there is not normally a need to save
the returned value.

The difference between this macro and cMethodFor is the extra ff parameter. When
using dpp strategies other then 1 (see the dpp section) under certain circumstance dpp
will alter the argument signature of the defined method in order to accommodate the
non-assembler generic / method interface. It will then create a new function which
has the correct signature in case the programmer requests a pointer to the method.
This way the returned function pointer will match the argument signature defined in
the class definition file. ff is a pointer to this cover function.

Example:

cvMethodFor(MyClass, gNew, my_new, f_my_new);

See also: iMethodFor, cMethodFor, ivMethodFor

Chapter 4: Kernel Reference 137

[defGeneric]defGeneric

defGeneric(typ, gen)

type typ; /* any valid type */

object (*gen)(); /* generic name */

The defGeneric macro is used to create a new generic function. All generic functions
are normally created in a single source file called generics.c which is automatically
created by the dpp program. typ defines the normal return type of the generic and
gen is the name of the new generic function.

There would not normally be a reason to use this macro.

Example:

defGeneric(object, vNew)

See also: dpp, externGeneric, InitGeneric,

NewGeneric::GenericFunction

[END]END

END

The END macro is simply syntactic sugar and is defined as (object) 0. It is used
when creating a new class to indicate the end of the list of superclasses.

Example:

CLASS = gNewClass(Class, Dictionary, END);

See also: NewClass::Class

[EQ]EQ

r = EQ(obj1, obj2);

object obj1, obj2;

int r;

This macro is used to determine if obj1 and obj2 refer to the same exact object (not
just the same value within the object). If so a 1 is returned and 0 otherwise.

138 Dynace Manual

Example:

object a, b, e;

int c;

a = gNewWithInt(ShortInteger, 7);

b = gNewWithInt(ShortInteger, 7);

e = a;

c = EQ(a, b); /* c == 0 */

c = EQ(b, e); /* c == 0 */

c = EQ(a, e); /* c == 1 */

See also: Equal::Object, NEQ

[externGeneric]externGeneric

externGeneric(typ, gen)

type typ; /* any valid type */

object (*gen)(); /* generic name */

The externGeneric macro is used to declare a generic function to external modules.
All generic functions are normally declared in a single source file called generics.h

which is automatically created by the dpp program. typ defines the normal return
type of the generic and gen is the name of the generic function.

There would not normally be a reason to call this macro.

Example:

externGeneric(object, vNew)

See also: dpp, defGeneric, InitGeneric

[Generic]Generic

gen = Generic(name)

object (*name)();

object gen;

The Generic macro is used to obtain the generic object from its associated C function
which implements the generic.

Chapter 4: Kernel Reference 139

Example:

object obj;

obj = Generic(vNew)

See also: FindMethodObject::Behavior

[GetArg]GetArg

GetArg(type)

This macro is used in conjunction with the MAKE_REST macro in order to create a
consistent mechanism for methods which take a variable number of arguments to
obtain its optional arguments. This mechanism, as opposed to the normal va_*
mechanism, is necessary in order to allow the same source code to work across the
various dpp code strategies (see the dpp subsection “Preprocessing Strategies”).

GetArg may be used anytime subsequent to the MAKE_REST macro call. Its single
argument is the type of the argument being taken off the variable argument list.
Each successive call gets successive arguments after the last named argument.

See MAKE_REST for a complete example.

See also: MAKE_REST, RESET_REST

[GetCVs]GetCVs

p = GetCVs(cls);

object cls;

CLASS_cv_t *p;

This macro is used to obtain a pointer to the class variable structure locally defined
in class cls. See the section “Internal Naming Conventions” for a description of
CLASS_cv_t.

Example:

MyClass_cv_t *cv = GetCVs(MyClass);

See also: GetIVs

140 Dynace Manual

[GetIVs]GetIVs

p = GetIVs(cls, obj);

object cls;

object obj;

CLASS_iv_t *p;

This macro is used to obtain a pointer to the instance variable structure locally defined
in class cls and associated with object obj. obj must, at some level, be an instance
of cls or one of its subclasses. See the section “Internal Naming Conventions” for a
description of CLASS_iv_t.

Example:

MyClass_iv_t *iv = GetIVs(MyClass, myObj);

See also: GetCVs, accessIVs, ivPtr

[imcPointer]imcPointer

meth = imcPointer(cls, gen);

object cls; /* the class */

object (*gen)(); /* generic function */

RTYPE (*meth)(); /* method */

This macro returns the instance method associated with an instance of class cls and
generic function gen. The normal runtime search is used to obtain the method. The
process performed by this macro accounts for all the additional runtime overhead
associated with the runtime binding of Dynace generic function usage. The method
pointer returned may be used as a normal C function pointer, thus nullifying all
future runtime overhead associated with dynamic binding. This macro may therefore
be used to locally cache a method and eliminate any runtime costs while retaining
the full dynamic capabilities of Dynace.

This macro correctly typecasts its returned pointer to agree with the associated
generic’s return type and argument list.

The use of this macro should be used sparingly. It is a little cumbersome to use
and, if not used with care, may defeat the dynamic nature and benefits of dynamic
binding. However, if used appropriately (in tight loops where efficiency is important),
this macro may be a valuable tool.

This macro returns a pointer to the C function which implements the method. NULL
is returned if no method is found.

Chapter 4: Kernel Reference 141

Example:

gChangeValue_t meth;

object x;

int i;

x = gNewWithInt(ShortInteger, 5);

meth = imcPointer(ShortInteger, gChangeValue);

for (i=0 ; i != 100 ;)

meth(x, i*2);

/* or use: (*meth)(x, i*2); on old C compilers */

/* same as gChangeValue(x, i*2); */

/* except 0 runtime overhead in loop */

See also: imiPointer, cmiPointer, cmcPointer, FindMethod::Behavior

[imeth]imeth

imeth

This macro is used to label and introduce a C function which is to serve as an instance
method. All it really does is declare the C function to be static, and therefore not
directly accessible externally to other source modules. It is important that all methods
be declared static to enforce the encapsulation and enable name space overloading.

Example:

imeth object ChangeValue(self)

object self;

{

...

}

See also: cmeth, method

[iMethodFor]iMethodFor

meth = iMethodFor(cls, gen, cf);

object cls; /* class */

object (*gen)(); /* generic function */

object (*cf)(); /* C function */

object meth; /* method object */

142 Dynace Manual

This macro is used to associate a C function, which implements an instance method,
with a generic function for class cls. It is normally only used within the class initial-
ization function associated with each class file.

This macro returns a Dynace object (an instance of the Method class) which represents
the C function which implements the method. Each Class and Generic object contains
a list of Method objects which it relates to so there is not normally a need to save
the returned value.

Example:

iMethodFor(MyClass, gChangeValue, my_change);

See also: ivMethodFor, cMethodFor

[imiPointer]imiPointer

meth = imiPointer(i, gen);

object i; /* the instance */

object (*gen)(); /* generic function */

RTYPE (*meth)(); /* method */

This macro returns the instance method associated with an instance i and generic
function gen. The normal runtime search is used to obtain the method. The process
performed by this macro accounts for all the additional runtime overhead associated
with the runtime binding of Dynace generic function usage. The method pointer
returned may be used as a normal C function pointer, thus nullifying all future run-
time overhead associated with dynamic binding. This macro may therefore be used
to locally cache a method and eliminate any runtime costs while retaining the full
dynamic capabilities of Dynace.

This macro correctly typecasts its returned pointer to agree with the associated
generic’s return type and argument list.

The use of this macro should be used sparingly. It is a little cumbersome to use
and, if not used with care, may defeat the dynamic nature and benefits of dynamic
binding. However, if used appropriately (in tight loops where efficiency is important),
this macro may be a valuable tool.

This macro returns a pointer to the C function which implements the method. NULL
is returned if no method is found.

Chapter 4: Kernel Reference 143

Example:

gChangeValue_t meth;

object x;

int i;

x = gNewWithInt(ShortInteger, 5);

meth = imiPointer(x, gChangeValue);

for (i=0 ; i != 100 ;)

meth(x, i*2);

/* or use: (*meth)(x, i*2); on old C compilers */

/* same as gChangeValue(x, i*2); */

/* except 0 runtime overhead in loop */

See also: imcPointer, cmiPointer, cmcPointer,

FindMethod::Behavior

[InitGeneric]InitGeneric

InitGeneric(gen);

object (*gen)();

The InitGeneric macro is used to create Dynace generic function objects which
know the address of the C function which implements it.

All generic functions are normally initialized from a single source file called
generics.c which is automatically created by the dpp program. gen is the name of
the generic function.

There would not normally be a reason to call this macro.

Example:

InitGeneric(vNew);

See also: dpp, NewGeneric::GenericFunction, defGeneric,

externGeneric

[IsaClass]IsaClass

r = IsaClass(obj);

object obj;

int r;

144 Dynace Manual

This macro is used to determine if obj refers to a class type object. It returns a 1 for
class and metaclass type objects and 0 for instance type objects.

Example:

object a;

int c;

a = gNewWithInt(ShortInteger, 7);

c = IsaClass(a); /* c == 0 */

c = IsaClass(ShortInteger) /* c == 1 */

c = IsaClass(ClassOf(a)); /* c == 1 */

c = IsaClass(ClassOf(ShortInteger)) /* c == 1 */

See also: IsaMetaClass, ClassOf, EQ

[IsaMetaClass]IsaMetaClass

r = IsaMetaClass(obj);

object obj;

int r;

This macro is used to determine if obj refers to a metaclass type object. It returns a
1 for metaclass type objects and 0 for instance and class type objects.

Example:

object a;

int c;

a = gNewWithInt(ShortInteger, 7);

c = IsaMetaClass(a); /* c == 0 */

c = IsaMetaClass(ShortInteger) /* c == 0 */

c = IsaMetaClass(ClassOf(a)); /* c == 0 */

c = IsaMetaClass(ClassOf(ShortInteger)) /* c == 1 */

See also: IsaClass, ClassOf, EQ

[IsInstanceOf]IsInstanceOf

r = IsInstanceOf(i, cls);

object i;

object cls;

int r;

Chapter 4: Kernel Reference 145

This macro is used to determine if i is a direct instance of cls. If so a 1 is returned
and 0 otherwise.

Example:

object a, b;

int c;

a = gNewWithInt(ShortInteger, 7);

b = gNewWithInt(Dictionary, 101);

c = IsInstanceOf(a, ShortInteger); /* c == 1 */

c = IsInstanceOf(a, LongInteger); /* c == 0 */

c = IsInstanceOf(b, Dictionary); /* c == 1 */

c = IsInstanceOf(b, Set); /* c == 0 */

c = IsInstanceOf(b, LinkList); /* c == 0 */

See also: IsKindOf::Object, ClassOf

[iSuper]iSuper

meth = iSuper(cls, gen);

object cls; /* class */

RTYPE (*gen)(); /* generic function */

RTYPE (*meth)(); /* method */

This macro returns the superclass instance method associated with the generic func-
tion gen for class cls. If the method is not found the normal method search procedure
will be used.

RTYPE is the return type associated with the generic and macro in question. The
method pointer returned will be correctly typecast.

This macro has been superseded by oSuper.

Example:

/* execute the superclass instance

method associated with gDispose

and pass it the single argument self */

iSuper(MyClass, gDispose)(self);

See also: oSuper, cSuper

146 Dynace Manual

[ivMethodFor]ivMethodFor

meth = ivMethodFor(cls, gen, cf, ff);

object cls; /* class */

object (*gen)(); /* generic function */

object (*cf)(); /* C function */

object (*ff)(); /* fixed C function */

object meth; /* method object */

This macro is used to associate a C function, which implements an instance method,
with a generic function for class cls. It is normally only used within the class initial-
ization function associated with each class file.

This macro returns a Dynace object (an instance of the Method class) which represents
the C function which implements the method. Each Class and Generic object contains
a list of Method objects which it relates to so there is not normally a need to save
the returned value.

The difference between this macro and iMethodFor is the extra ff parameter. When
using dpp strategies other then 1 (see the dpp section) under certain circumstance dpp
will alter the argument signature of the defined method in order to accommodate the
non-assembler generic / method interface. It will then create a new function which
has the correct signature in case the programmer requests a pointer to the method.
This way the returned function pointer will match the argument signature defined in
the class definition file. ff is a pointer to this cover function.

Example:

ivMethodFor(MyClass, gChangeValue, my_change, f_my_change);

See also: iMethodFor, cMethodFor

[ivPtr]ivPtr

iv = ivPtr(i);

object i;

ivType *iv;

The ivPtr macro returns a pointer to the locally defined instance variable structure
associated with instance i. It is used to gain access to the instance variables associated
with the instance object pointed to by the i variable. It may only be used in a file
which defines a class and i must be an instance of the class being defined or one of
its subclasses.

If the method is going to make more than one access to its instances variables the
pointer returned by ivPtr should normally be saved and reused.

Chapter 4: Kernel Reference 147

If the variable containing the instance variables you wish to access is named self

than the ivsPtr or accessIVs macro should be used.

Although the example below makes its illustration with the self variable (because
it’s always the name of the first argument to a method) ivPtr is most often used to
access the instance variables of a second argument (which wouldn’t have the name
self) which is an instance of the same (or sub) class.

Example:

defclass {

char name[30];

int age;

};

imeth object PrintAge(object self)

{

printf("Age = %d\n", ivPtr(self)->age);

return self;

}

imeth object PrintInstance(object self)

{

ivType *iv = ivPtr(self); /* save the pointer */

/* the above line is the same as accessIVs */

printf("Name = %s\n", iv->name); /* use saved pointer */

printf("Age = %d\n", iv->age);

return self;

}

See also: accessIVs, ivsPtr, ivType, GetIVs

[ivsPtr]ivsPtr

iv = ivsPtr;

ivType *iv;

The ivsPtr macro returns a pointer to the locally defined instance variable structure
for the variable named self. It is used to gain access to the instance variables
associated with the instance object pointed to by the self variable. It may only be
used in instance methods, in a file which defines a class.

This macro is typically used when an instance method makes a single access to its
instance variables. If the method is going to make more than one access to its instances
variables the macro accessIVs would normally be used or the pointer returned by
ivsPtr would normally be saved and reused.

148 Dynace Manual

If the variable containing the instance variables you wish to access is not named self

than the ivPtr macro should be used.

Example:

defclass {

char name[30];

int age;

};

imeth object PrintAge(object self)

{

printf("Age = %d\n", ivsPtr->age); /* single use */

return self;

}

imeth object PrintInstance(object self)

{

ivType *iv = ivsPtr; /* save the pointer */

/* the above line is the same as accessIVs */

printf("Name = %s\n", iv->name); /* use saved pointer */

printf("Age = %d\n", iv->age);

return self;

}

See also: accessIVs, ivPtr, ivType, GetIVs

[ivType]ivType

ivType

This macro is used to declare a variable to be of a structure which is defined by the
local instance variable declaration. It can only be used in a source file which is used
to define a class and only of the structure of the locally defined instance variable
structure. It’s main use is while passing a pointer to a local variable structure to
other, usually statically defined, C functions within a class definition file.

Example:

ivType *ivp;

ivp = ivsPtr;

See also: accessIVs, ivPtr, ivsPtr

Chapter 4: Kernel Reference 149

[MAKE REST]MAKE_REST

MAKE_REST(lst);

This macro is used in conjunction with the GetArg macro in order to create a consis-
tent mechanism for methods which take a variable number of arguments to obtain its
optional arguments. This mechanism, as opposed to the normal va_* mechanism, is
necessary in order to allow the same source code to work across the various dpp code
strategies (see the dpp subsection “Preprocessing Strategies”).

Methods which take a variable number of arguments and wish to access those argu-
ments must use the MAKE_REST macro. This macro must exist immediately following
the declaration section of the method and prior to the normal executable code.

MAKE_REST takes a single argument which must be the last named argument in the
method’s argument list. The result of calling MAKE_REST is the creation of a variable
named _rest_ which acts as a pointer to the variable argument list, a va_list.

Example:

imeth gChangeValue(int a, char *b, ...)

{

double var1;

int dd;

MAKE_REST(b);

var1 = GetArg(double);

dd = GetArg(int);

...

}

See also: GetArg, RESET_REST

[NEQ]NEQ

r = NEQ(obj1, obj2);

object obj1, obj2;

int r;

This macro is used to determine if obj1 and obj2 refer to the same exact object (not
just the same value within the object). If so a 0 is returned and 1 otherwise.

150 Dynace Manual

Example:

object a, b, e;

int c;

a = gNewWithInt(ShortInteger, 7);

b = gNewWithInt(ShortInteger, 7);

e = a;

c = NEQ(a, b); /* c == 1 */

c = NEQ(b, e); /* c == 1 */

c = NEQ(a, e); /* c == 0 */

See also: Equal::Object, EQ

[oSuper]oSuper

meth = oSuper(cls, gen, obj);

object cls;

RTYPE (*gen)();

object obj;

RTYPE (*meth)();

This macro returns the superclass instance or class method associated with the generic
function gen for class cls. obj is used to tell whether the object being acted upon is
a class or instance object. It should be the argument which will be the first argument
to the methods being returned. If the method is not found the normal method search
procedure will be used.

RTYPE is the return type associated with the generic and macro in question. The
method pointer returned will be correctly typecast.

This macro effectively eliminates the need for the iSuper or cSuper macros.

Example:

/* execute the superclass

method associated with gDispose

and pass it the single argument self */

oSuper(MyClass, gDispose, self)(self);

See also: iSuper, cSuper

Chapter 4: Kernel Reference 151

[RegisterVariable]RegisterVariable

p = RegisterVariable(v);

object v;

void *p;

The RegisterVariable macro is used as a short hand way of registering global object
variables to protect them from the automatic garbage collector. v is the global variable
to be protected and p is a registered memory pointer which may be used to change
or delete the registration at some later point.

See the text for a detailed description of the garbage collector.

See also: RegisterMemory::Dynace, RemoveRegisteredMemory::Dynace,

ChangeRegisteredMemory::Dynace

[RESET REST]RESET_REST

RESET_REST;

This macro is used in conjunction with the GetArg and MAKE_REST macros in order to
create a consistent mechanism for methods which take a variable number of arguments
to obtain its optional arguments. This macro allows the GetArg to go back over
the argument list from the beginning, thus allowing multiple passes over the entire
argument list. RESET_REST may be called anytime, and any number of times, after
MAKE_REST has been called. Each time RESET_REST is called, GetArg will start back
at the beginning of the argument list.

Example:

imeth gChangeValue(int a, char *b, ...)

{

double var1;

int dd;

MAKE_REST(b);

var1 = GetArg(double);

dd = GetArg(int);

/* get the same arguments again */

RESET_REST;

var1 = GetArg(double);

dd = GetArg(int);

...

}

See also: GetArg, MAKE_REST

152 Dynace Manual

[RespondsTo]RespondsTo

r = RespondsTo(i, gen);

object i;

object (*gen)();

int r;

This macro is used to determine if the class of i implements a method which is
associated with generic gen. If so a 1 is returned and 0 otherwise.

Example:

object a;

int c;

a = gNewWithInt(ShortInteger, 7);

c = RespondsTo(a, gShortValue); /* c == 1 */

c = RespondsTo(a, gNext); /* c == 0 */

See also: FindMethod::Behavior

[StackAlloc]StackAlloc

i = StackAlloc(cls);

object cls;

object i;

This macro is used to allocate a new instance of class cls from the local stack space.
i will be an instance of class cls with all its instance variables initialized to NULL.

Disposal of the returned object will occur automatically when the local stack is exited,
however, no automatic execution of additional disposal code will occur. Manual
disposal may also be used (via gDispose, etc.) but the object will still take up stack
space until the stack frame is exited.

Since the returned object is allocated from the current stack frame it cannot be
returned from the function which allocated it.

This facility depends on a robust implementation of the alloca system call.

Example:

object a;

a = StackAlloc(ShortInteger);

Chapter 4: Kernel Reference 153

See also: StackAlloc::Behavior

154 Dynace Manual

4.10 Kernel Functions

The number of regular C language functions available externally has been kept to an ab-
solute minimum. The reason for this is the static nature of C functions and an effort to
minimize the number of routines the programmer needs to use the system. The following
text describes each function.

[Dynace GetInitialPageSize]Dynace_GetInitialPageSize

sz = Dynace_GetInitialPageSize();

long sz;

This is an application defined function optionally supplied to determine the amount
of memory Dynace should allocate upon startup. If used, it must be defined and
supplied as part of the application’s code. The value returned, given in number of
bytes, is what Dynace uses to allocate its initial block of memory for various objects
to be allocated from. This is used to speed up Dynace under Windows. See [Speeding-
Up-IsObj], page 76.

Example:

The following function would be defined by the application:

long Dynace_GetInitialPageSize()

{

return 1000000;

}

See also: Dynace_GetPageSize

[Dynace GetPageSize]Dynace_GetPageSize

sz = Dynace_GetPageSize();

long sz;

This is an application defined function optionally supplied to determine the amount
of memory Dynace should allocate after its startup allocation. If used, it must be
defined and supplied as part of the application’s code. The value returned, given in
number of bytes, is what Dynace uses to allocate its blocks of memory, when needed,
after its initial memory block is used up. This is used to speed up Dynace under
Windows. See [Speeding-Up-IsObj], page 76.

Chapter 4: Kernel Reference 155

Example:

The following function would be defined by the application:

long Dynace_GetPageSize()

{

return 100000;

}

See also: Dynace_GetInitialPageSize

[GetIVptr]GetIVptr

iv = GetIVptr(obj, cls);

object obj;

object cls;

void *iv;

This function is the one which does all the work to obtain a pointer to the instances
variables from an object. obj is the object whose instance variables are needed. cls
is the class which describes the structure of the instance variables needed. obj must
be an instance of class cls at some point in its hierarchy. The pointer returned will
only allow access to the instance variables defined by class cls regardless of any other
instance variables obj may contain.

This function should not be called by an application. The relevant macros should be
used instead.

See also: ivPtr, ivsPtr, accessIVs

[InitDynace]InitDynace

InitDynace(sb);

void *sb; /* stack beginning */

This function is used to initialize the Dynace kernel and all classes and generics. It
must be called prior to the use of any other Dynace facility. It is typically called in
main().

This function calls InitKernel internally to initialize the kernel first. The sb parame-
ter tells Dynace where the beginning of the stack resides. The garbage collector needs
this information to automatically scan automatic variables. sb is typically passed the
address of the argc argument to main().

156 Dynace Manual

Example:

main(int argc, char *argv[])

{

InitDynace(&argc);

.....

}

See also: InitKernel, GC::Dynace

[InitKernel]InitKernel

InitKernel(sb);

void *sb; /* stack beginning */

This function is used to initialize the Dynace kernel. It must be called prior to the
use of any other Dynace facility. Typically, however, InitKernel is called indirectly
through another function (such as InitDynace which also initializes the class library
and user added classes). The sb parameter tells Dynace where the beginning of the
stack resides. The garbage collector needs this information to automatically scan
automatic variables. sb is typically passed the address of the argc argument to
main().

Example:

main(int argc, char *argv[])

{

InitKernel(&argc);

.....

}

See also: InitDynace, GC::Dynace

[IsObj]IsObj

r = IsObj(obj);

object obj;

int r;

This function is used to determine the validity of an object. If obj is a valid Dynace
object IsObj returns a 1 otherwise it returns a 0.

Chapter 4: Kernel Reference 157

Example:

if (IsObj(obj))

gGeneric(obj);

else

abort("Not an object");

See [Speeding-Up-IsObj], page 76.

158 Dynace Manual

4.11 Kernel Data Types

There is really only one new data type associated with Dynace, the object type. However,
Dynace also has some type definitions which are simply used to ease programming in the
Dynace environment.

[object]object

object

This is the principal type of object in Dynace. All Dynace objects are of type object.
object is actually a pointer to memory which is allocated (by Dynace) from the heap.
Objects never reside on the stack or static memory, although pointers to them may.

The object declaration may be used any place the int declaration may be used.

Example:

object a, b, c;

[ofun]ofun

ofun

This declaration is just a short hand way of declaring a variable to be a pointer to a
function which returns an object.

The ofun declaration may be used any place the int declaration may be used.

Example:

ofun a;

object (*b)();

/* a and b are of the same type */

159

5 Class Library Reference

The Dynace class library is built on top of the Dynace kernel. It provides a library of
facilities which make the Dynace system useful to an application programmer. It provides
various data representational type classes which represent the normal C language data types
such as short, long, double, pointer, etc. It also provides new data type classes such as date.

The class library also provides generic container type classes such as dictionaries and
linked lists. It also provides classes which implement the ability for Dynace to run multiple
threads and for those threads to communicate and control each other.

This chapter will discuss the structure and various facilities available in the Dynace class
library.

Note that most of the Dynace kernel will run independently of the Dynace class library.
The value of this is that should a programmer desire to create his own class library (to
replace the included class library) he may build on top of the Dynace kernel just as the
included library does.

Note that the first argument to all class methods is always the associated class object
and the first argument to all instance methods is always an instance of the associated
class. Therefore, documentation for the first argument of generics is not always given – it’s
redundant.

There is a naming convention used with Dynace generics. All generics start with either
a lower case “g” or “v”, and are always followed by an upper case letter. The ones which
start with “g” are normal generics and may be treated like normal C functions. The ones
which begin with “v” use the variable argument facilities of C and you should, therefore,
take a bit extra care when using them since there is no compile time argument checking
being done with these functions.

Since all generics start with either “g” or “v” and in order to avoid the difficulty associ-
ated with grouping all the generics under two letters, the first letter is dropped for indexing
or heading purposes. Therefore if you are looking up a generic, it will always appear in
the index or header with its first letter missing. The syntax description and example code,
however, will show the entire name.

5.1 Class Library Hierarchy

This Dynace class library contains the following class hierarchy (which of course includes
the hierarchy described in the Kernel Reference):

160 Dynace Manual

Dynace Class Hierarchy

Object

Behavior
Class
MetaClass

Method

GenericFunction

Dynace

Number
Character
ShortInteger
UnsignedShortInteger
LongInteger

Date
DateTime *

DoubleFloat

Time
DateTime *

Pointer

Link
LinkList

LinkObject
LinkValue

Sequence
LinkSequence
LinkObjectSequence
SetSequence

Association
LookupKey

ObjectAssociation
StringAssociation
IntegerAssociation

* DateTime inherits from Date and Time

Set
Dictionary
StringDictionary
IntegerDictionary

Stream
String
File
LowFile
Pipe
Socket

PropertyList

Thread

Semaphore

Constant

Array
NumberArray

CharacterArray
ShortArray
UnsignedShortArray
IntegerArray
LongArray
FloatArray
DoubleFloatArray

BitArray
ObjectArray
PointerArray

FindFile

BTree

BTreeNode

Chapter 5: Class Library Reference 161

5.2 Array Class

The Array class is used to represent heterogeneous and non-heterogeneous indexable collec-
tions of arbitrary dimensions. These arrays are designed to be flexible – they have the ability
to be dynamically re-dimensioned or reshaped – and space and speed efficient. Although
most of the actual functionality contained in subclasses of the Array class are implemented
in the Array class, most users will find the subclasses more useful. The documentation
associated with this class serves to document the functionality which is common to all its
subclasses.

5.2.1 Array Class Methods

The majority of class methods associated with this class are mainly used by and documented
in subclasses of the Array class.

[IndexOrigin]IndexOrigin::Array

s = gIndexOrigin(s, n)

object s;

int n;

This method is used to set the index origin associated with all array indexing. The
default is 0. This means that a 4 element, 1 dimension array would be indexed by 0,
1, 2, 3. If the index origin is set to one that same array would be indexed by 1, 2, 3,
4.

The index origin may be changed any number of times and has no actual effect on
any arrays (either created previously or subsequently). It only effects how indexing
works.

5.2.2 Array Instance Methods

Instance methods associated with this class provide functionality which is common to all
subclasses of the Array class.

[ArrayPointer]ArrayPointer::Array

p = gArrayPointer(s)

object s;

void *p;

This method returns a pointer to the first element of an array represented be s. The
return type will be a pointer to the type of array it is. For example a ShorArray

will return a pointer to a short and a DoubleFloatArray will return a pointer to a
double. Consecutive elements may be accessed by incrementing the pointer (although
this is not the preferred way of going through an array).

162 Dynace Manual

[Copy]Copy::Array

r = gCopy(i);

object i;

object r;

This method is used to create a new array object which is an exact copy, including
type, rank, shape and values, of i. The value returned is the new array object.

See also: DeepCopy::Array

[DeepCopy]DeepCopy::Array

r = gDeepCopy(i);

object i;

object r;

This method is used to create a new array object which is an exact copy, including
type, rank, shape and values, of i. The value returned is the new array object.

The difference between this method and Copy::Array is that if the array being copied
is an ObjectArray, DeepCopy will also make copies of the elements. Copy will not.

See also: Copy::Array

[DeepDispose]DeepDispose::Array

r = gDeepDispose(s)

object s;

object r; /* NULL */

This method disposes and frees all memory associated with an Array object. If
it is an instance of the ObjectArray class each non-NULL element will also be
DeepDispose’d.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

[Dispose]Dispose::Array

r = gDispose(s)

object s;

object r; /* NULL */

Chapter 5: Class Library Reference 163

This method disposes and frees all memory associated with an Array object.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

[Equal]Equal::Array

r = gEqual(i, a)

object i, a;

int r;

This method is used to determine the equality of two arrays. If they (i and a) are
instances of the same class, same rank, same shape and same values than Equal

returns a 1. Equal returns 0 otherwise.

See also: EQ

[Index]Index::Array

p = gIndex(i, idx)

object i;

va_list idx;

This method is used to obtain a pointer to a single element of an array. It is only
intended to be used internally by the subclasses of Array. i is the array to be indexed
and idx is a va list where each element indicates successive indices into the array. The
number of elements in idx must equal the rank of the array. The pointer returned
may be typecast to the appropriate type.

See also: ChangeValue::NumberArray, ShortValue::NumberArray

[Rank]Rank::Array

r = gRank(i)

object i;

unsigned r;

This method is used to obtain the number of dimensions a particular array (i) has.

See also: Shape::Array, Size::Array, Reshape::Array

164 Dynace Manual

[Reshape]Reshape::Array

i = vReshape(i, r, ...)

object i;

unsigned r;

This method is used to change the rank and shape of an array (i). r is the new rank
(number of dimensions) of the array and the remaining arguments (type unsigned)
indicate the size of each consecutive dimension. Not that the number of arguments
after r must be equal to the number r.

If the new shape has fewer elements than the original, the remaining elements are
discarded. If, however, the new shape has more elements, the elements in the original
array will be reused (from the beginning) over and over until the new array is filled.

The value returned is the modified array passed.

See also: Shape::Array, Rank::Array

[Shape]Shape::Array

s = gShape(i)

object i;

object s;

This method is used to obtain the shape (or dimensions) of a particular array (i).
The value returned (s) is an instance of the ShortArray class, each element of which
contains a consecutive dimension.

See also: Reshape::Array, Rank::Array, Size::Array

[Size]Size::Array

s = gSize(i)

object i;

int s;

This method is used to obtain the total number of elements in array i.

See also: Rank::Array, Shape::Array

Chapter 5: Class Library Reference 165

[StringRep]StringRep::Array

s = gStringRep(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
type, rank, shape and values associated with i. This is often used to print or display
the value. It is also used by PrintValue::Object and indirectly by Print::Object

(two methods useful during the debugging phase of a project) in order to directly
print an object’s value.

See also: PrintValue::Object, Print::Object, StringRepValue::Array

[StringRepValue]StringRepValue::Array

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
values associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

See also: PrintValue::Object, Print::Object, StringRep::Array

166 Dynace Manual

5.3 Association Class

The Association class is an abstract class which serves the sole purpose of grouping several
subclasses which have common functionality. There is no specific class or instance methods
directly implemented by this class, however, some methods are documented here because
of their common interface with all subclasses of the Association class.

The subclasses of this class (LookupKey, ObjectAssociation, StringAssociation and
IntegerAssociation) are used to associate a key with a value and provide a means for
manipulating these associations. Instances of these classes are principally used by the Set

and Dictionary classes but may also be useful wherever a key/value pair may be useful.

5.3.1 Association Class Methods

There are no class methods implemented by this class.

5.3.2 Association Instance Methods

There are no class methods implemented by this class, however, some methods are doc-
umented here because of their common interface with all subclasses of the Association

class. These methods are actually implemented by all subclasses of this class.

[Compare]Compare::Association

r = gCompare(i, obj);

object i;

object obj;

int r;

This method is used by the generic container classes to determine the equality of the
keys represented by i and obj. r is -1 if the value represented by i is less than the
value represented by obj, 1 if the value of i is greater than obj, and 0 if they are
equal.

See also: Hash::Association

[Hash]Hash::Association

val = gHash(i);

object i;

int val;

This method is used by the generic container classes to obtain hash values for the
key. val is a hash value between 0 and a large integer value.

See also: Compare::Association

Chapter 5: Class Library Reference 167

5.4 BitArray Class

This class, which is a subclass of Array, is used to represent arbitrary shaped arrays of
on/off–yes/no information in an efficient manner. Much of the functionality of this class
is implemented and documented in the Array class. Differences are documented in this
section.

5.4.1 BitArray Class Methods

The only class method implemented by this class is one used to create new BitArray

instances.

[New]New::BitArray

ary = vNew(BitArray, rnk, ...)

unsigned rnk, ...

object ary;

This class method is used to create a new bit array.

rnk is the number of dimensions the new array should have. The remaining arguments
(each of type unsigned) indicates the size of each consecutive dimension. Note that
the number of arguments following rnk must be the same as the value in rnk.

ary is the new array object created and will be initialized to all zeros.

Example:

object ary;

ary = vNew(BitArray, 2, 5, 4);

/* ary is a 5x4 matrix */

5.4.2 BitArray Instance Methods

The BitArray instance methods are implemented in the Array class for efficiency reasons
but those methods which are particular to the BitArray are documented here.

[BitValue]BitValue::BitArray

v = vBitValue(ary, ...);

object ary;

unsigned ...

int v;

This method is used to obtain the bit (1 or 0) value associated with a particular
element of an instance of the BitArray class.

168 Dynace Manual

The arguments after the ary argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the ary argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

Note that this is one of the few generics which doesn’t return a Dynace object. It
returns an int.

Example:

object ary;

int v;

ary = vNew(BitArray, 2, 5, 4);

v = vBitValue(ary, 1, 2);

/* v has ary[1][2] */

See also: ChangeBitValue::BitArray

[ChangeBitValue]ChangeBitValue::BitArray

ary = vChangeBitValue(ary, val, ...);

object ary;

int val;

unsigned ...

This method is used to change the value of one element of BitArray ary.

val is the value which the element of the array should be changed to (a 1 or 0).

The arguments after the val argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the val argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

The value returned is the modified array passed.

Example:

object ary;

ary = vNew(BitArray, 2, 5, 4);

vChangeBitValue(ary, 1, 1, 2);

/* ary[1][2] <- 1 */

See also: BitValue::BitArray

Chapter 5: Class Library Reference 169

5.5 BTree Class

The BTree class provides a means to hold a group of key / value pairs in a collection.
Objects in a BTree collection can then be rapidly accessed arbitrarily (as in hash tables) as
well as retrieved in a specific sequence (as in an ordered linked lists). Keys and values may
be arbitrary Dynace objects.

It is important that the key objects correctly respond to gCopy and gDeepCopy because
copies of the keys are used within the key structure.

5.5.1 BTree Class Methods

The only class method used in this class is one to create instances of itself.

[New]New::BTree

bt = gNew(BTree);

object bt;

This class method creates instances of the BTree class.

5.5.2 BTree Instance Methods

The instance methods associated with this class are used to add, remove, and retrieve key
/ value pairs.

[AddValue]AddValue::BTree

old = gAddValue(bt, key, val);

object bt;

object key;

object val;

object old;

This method is used to add an arbitrary key / value pair to BTree bt. Both key and
val may be arbitrary Dynace objects.

By default the built in generic gCompare is used for all key comparisons. This may
be over written via gSetFunction::BTree.

Each key added to a particular BTree must be unique (i.e. duplicate keys are not
allowed).

AddValue normally returns NULL. However, if NULL is not returned then it means that
the key / value pair just added replaced a similar key / value pair. In that case the
old value associated with the key will be returned and the old key object will still be
used. This will normally mean you will have to dispose of the old value returned and
your new key (since the old one was used).

170 Dynace Manual

Example:

object key = gNewWithStr(String, "My Key");

object val = gNewWithStr(String, "My Value");

object old = gAddValue(bt, key, val);

if (old) {

gDispose(key);

gDispose(old);

}

[DeepDispose]DeepDispose::BTree

r = gDeepDispose(bt);

object bt;

object r; /* NULL */

This method is used to DeepDispose all key / value pairs associated with the BTree
and then dispose of bt itself.

See also: Dispose::BTree, DeepDisposeAllNodes::BTree

[DeepDisposeAllNodes]DeepDisposeAllNodes::BTree

r = gDeepDisposeAllNodes(bt);

object bt;

object r;

This method is used to DeepDispose all key / value pairs associated with the BTree
without disposing of bt itself. The BTree object passed is returned.

See also: Dispose::BTree, DeepDispose::BTree

[DeepDisposeObj]DeepDisposeObj::BTree

r = gDeepDisposeObj(bt, key);

object bt;

object key;

object r;

This method is used to DeepDispose a specific key / value pair associated with the
BTree. The key / value pair is determined by key. If the key / value pair was found
and removed, gDeepDisposeObj will return non-NULL. If the key was not found then
NULL is returned.

Chapter 5: Class Library Reference 171

See also: DisposeObj::BTree, DeepDisposeAllNodes::BTree

[Dispose]Dispose::BTree

r = gDispose(bt);

object bt;

object r; /* NULL */

This method is used to Dispose of the BTree object without disposing of all of the
key / value pairs.

See also: DeepDispose::BTree, DisposeAllNodes::BTree

[DisposeAllNodes]DisposeAllNodes::BTree

r = gDisposeAllNodes(bt);

object bt;

object r;

This method is used to disassociate all key / value pairs from the given BTree. Neither
the keys, values, nor bt are disposed. The BTree object passed is returned.

See also: DeepDispose::BTree, DisposeAllNodes::BTree

[DisposeObj]DisposeObj::BTree

r = gDisposeObj(bt, key);

object bt;

object key;

object r;

This method is used to disassociate (not dispose) a specific key / value pair from the
BTree. The key / value pair is determined by key. If the key / value pair was found
and removed, gDisposeObj will return non-NULL. If the key was not found then NULL

is returned.

See also: DeepDisposeObj::BTree, DisposeAllNodes::BTree

172 Dynace Manual

[FindEQ]FindEQ::BTree

val = gFindEQ(bt, key, fkey);

object bt;

object key;

object *fkey;

object val;

This method is used to retrieve the value associated with a given key. The object
associated with a key which compares equally with key is returned. If none is found
NULL is returned.

fkey points to a location which will receive the actual key object found. fkey may
be NULL in which case that argument will not be used.

Example:

object fkey;

object key = ...;

object val = gFindEQ(bt, key, &fkey);

See also: AddValue::BTree, FindNext::BTree

[FindFirst]FindFirst::BTree

val = gFindFirst(bt, fkey);

object bt;

object *fkey;

object val;

This method is used to retrieve the first key / value pair. If no key value pairs exist
NULL is returned.

fkey will be updated to point to the key associated to the value returned. It may be
used on subsequent calls to gFindNext.

See also: AddValue::BTree, FindNext::BTree

Chapter 5: Class Library Reference 173

[FindGE]FindGE::BTree

val = gFindGE(bt, key, fkey);

object bt;

object key;

object *fkey;

object val;

This method is used to retrieve the value associated with a given key. The object
associated with a key which compares greater than or equal to key is returned. If
none is found NULL is returned.

fkey points to a location which will receive the actual key object found. fkey may
be NULL in which case that argument will not be used.

Example:

object fkey;

object key = ...;

object val = gFindGE(bt, key, &fkey);

See also: AddValue::BTree, FindNext::BTree

[FindGT]FindGT::BTree

val = gFindGT(bt, key, fkey);

object bt;

object key;

object *fkey;

object val;

This method is used to retrieve the value associated with a given key. The object
associated with a key which compares strictly greater than key is returned. If none
is found NULL is returned.

fkey points to a location which will receive the actual key object found. fkey may
be NULL in which case that argument will not be used.

Example:

object fkey;

object key = ...;

object val = gFindGT(bt, key, &fkey);

See also: AddValue::BTree, FindNext::BTree

174 Dynace Manual

[FindLast]FindLast::BTree

val = gFindLast(bt, fkey);

object bt;

object *fkey;

object val;

This method is used to retrieve the last key / value pair. If no key value pairs exist
NULL is returned.

fkey will be updated to point to the key associated to the value returned. It may be
used on subsequent calls to gFindPrev.

See also: AddValue::BTree, FindPrev::BTree

[FindLE]FindLE::BTree

val = gFindLE(bt, key, fkey);

object bt;

object key;

object *fkey;

object val;

This method is used to retrieve the value associated with a given key. The object
associated with a key which compares less than or equal to key is returned. If none
is found NULL is returned.

fkey points to a location which will receive the actual key object found. fkey may
be NULL in which case that argument will not be used.

Example:

object fkey;

object key = ...;

object val = gFindLE(bt, key, &fkey);

See also: AddValue::BTree, FindPrev::BTree

Chapter 5: Class Library Reference 175

[FindLT]FindLT::BTree

val = gFindLT(bt, key, fkey);

object bt;

object key;

object *fkey;

object val;

This method is used to retrieve the value associated with a given key. The object
associated with a key which compares strictly less than key is returned. If none is
found NULL is returned.

fkey points to a location which will receive the actual key object found. fkey may
be NULL in which case that argument will not be used.

Example:

object fkey;

object key = ...;

object val = gFindLT(bt, key, &fkey);

See also: AddValue::BTree, FindPrev::BTree

[FindNext]FindNext::BTree

val = gFindNext(bt, fkey);

object bt;

object *fkey;

object val;

This method is used to retrieve a key / value pair which comes immediately after
the key pointed to by fkey. If fkey points to NULL than the first key / value pair is
retrieved. If none is found NULL is returned.

fkey will be updated to point to the key associated to the value returned. It may be
used on subsequent calls to gFindNext.

Example:

object fkey = NULL;

object val;

while (val = gFindNext(bt, &fkey))

do whatever;

See also: AddValue::BTree, FindPrev::BTree

176 Dynace Manual

[FindPrev]FindPrev::BTree

val = gFindPrev(bt, fkey);

object bt;

object *fkey;

object val;

This method is used to retrieve a key / value pair which comes immediately before
the key pointed to by fkey. If fkey points to NULL than the last key / value pair is
retrieved. If none is found NULL is returned.

fkey will be updated to point to the key associated to the value returned. It may be
used on subsequent calls to gFindPrev.

Example:

object fkey = NULL;

object val;

while (val = gFindPrev(bt, &fkey))

do whatever;

See also: AddValue::BTree, FindNext::BTree

[SetFunction]SetFunction::BTree

f = gSetFunction(bt, fun);

object bt;

int (*fun)(object, object);

object (*f)();

Normally, the BTree class uses the generic function gCompare for all its key compar-
isons. With gSetFunction you may override this behavior and specify an alternative
generic (or regular C) function to call. See Compare::String for details on the se-
mantics of that function.

gSetFunction returns the previous compare function set.

See also: AddValue::BTree, Compare::String

Chapter 5: Class Library Reference 177

[Size]Size::BTree

n = gSize(bt);

object bt;

int n;

This method is used to obtain the number of key / value pairs associated with bt.

178 Dynace Manual

5.6 BTreeNode Class

This class is used by the BTree class to store objects in memory. There are no user methods
associated with this class.

Chapter 5: Class Library Reference 179

5.7 Character Class

The Character class is used to represent the C language char data type as a Dynace object.
It is a subclass of the Number class. Even though the Character class implements most
of its own functionality, it is documented as part of the Number class because most of the
interface is the same for all subclasses of the Number class. Differences are documented in
this section.

5.7.1 Character Class Methods

The Character class has only one class method and it is used to create new instances of
itself.

[NewWithChar]NewWithChar::Character

i = gNewWithChar(Character, c);

int c;

object i;

This class method creates instances of the Character class. c is the initial value of
the character being represented. Note that c is of type int. That is because if you
pass a character to a generic function (which uses a variable argument declaration)
the C language will automatically promote it to an int.

The value returned is a Dynace instance object which represents the character passed.

Note that the default disposal methods are used by this class since there are no special
storage allocation requirements.

Example:

object x;

x = gNewWithChar(Character, ’a’);

See also: CharValue::Number, ChangeCharValue::Number,

Dispose::Object

5.7.2 Character Instance Methods

The instance methods associated with the Character class provide a means of changing
and obtaining the value associated with an instance of the Character class. Most of the
Character class instance methods are documented in the Number class because of their com-
mon interface with all other subclasses of the Number class. The remainder are documented
in this section.

180 Dynace Manual

[FormatChar]FormatChar::Character

s = gFormatChar(i);

object i;

object s;

This method creates an instance of the String class which contains the character
represented by i.

Example:

object x, y;

x = gNewWithChar(Character, ’a’);

y = gFormatChar(x);

/* y is a String object which represents "a" */

See also: FormatNumber::Number

Chapter 5: Class Library Reference 181

5.8 CharacterArray Class

This class, which is a subclass of NumberArray, is used to represent arbitrary shaped arrays
of the C language char data type in an efficient manner. Although this class implements
much of its own functionality it is documented within the NumberArray and Array classes
because the interface is shared by all subclasses of the NumberArray class.

182 Dynace Manual

5.9 Constant Class

This class is used to represent constants. Constants are objects which can never be destroyed
or copied. They always retain their value and when compared, they only equal themselves.
An example of a constant would be an object which represents a true or false condition
such as T and NIL in lisp.

5.9.1 Constant Class Methods

There are no specific class methods associated with this class. The default instance creation
method (New) is used.

5.9.2 Constant Instance Methods

The instance methods associated with this class are used to override certain default methods
in order to insure the “constant” status of instances of this class.

[Copy]Copy::Constant

s = gCopy(s)

object s;

This method performs no function and returns the value passed. Its only use is to
insure that there is only one copy of any particular instances of the Constant class.

[DeepCopy]DeepCopy::Constant

s = gDeepCopy(s)

object s;

This method performs no function and returns the value passed. Its only use is to
insure that there is only one copy of any particular instances of the Constant class.

[DeepDispose]DeepDispose::Constant

r = gDeepDispose(s)

object s;

object r;

This method performs no function and returns the value passed. Its only use is to
insure the undelete-ability of instances of the Constant class.

Chapter 5: Class Library Reference 183

[Dispose]Dispose::Constant

r = gDispose(s)

object s;

object r;

This method performs no function and returns the value passed. Its only use is to
insure the undelete-ability of instances of the Constant class.

[Equal]Equal::Constant

r = gEqual(s, t)

object s;

object t;

int r;

This method checks for the equality of two objects (s and t). If they are the same
constant a 1 is returned and 0 otherwise.

184 Dynace Manual

5.10 Date Class

The Date class is a subclass of the LongInteger class and used to represent dates. The
equivalent C language representation would be a long integer in the form YYYYMMDD so July
23, 1993 would be represented as 19930723L.

5.10.1 Date Class Methods

The Date class has only one class method. The New method is inherited from the
LongInteger class.

[CalToJul]CalToJul::Date

i = gCalToJul(Date, dt);

long i;

long dt;

This class method returns a julian date calculated from the input calendar date.

Example:

long x;

x = gCalToJul(Date, 20000605L); /* x = julian date 730276L */

See also: JulToCal::Date, Julian::Date

[FixInvalidDate]FixInvalidDate::Date

i = gFixInvalidDate(Date, mode);

int i;

int mode;

This class method sets the method of handling invalid dates. The previous mode is
returned.

The list of valid modes is as follows:

0 Does nothing. Leaves the date invalid.

1 Changes the date to be the last day of the month.

2 Changes the date to be the corresponding day of the

next month.

Example:

int x;

x = gFixInvalidDate(Date, 1); /* x = the previous mode */

Chapter 5: Class Library Reference 185

[JulToCal]JulToCal::Date

i = gJulToCal(Date, jdt);

long i;

long jdt;

This class method returns a calendar date calculated from the input julian date.

Example:

long x;

x = gCalToJul(Date, 730276L);

/* x = calendar date 20000605L */

See also: CalToJul::Date, Julian::Date

[Today]Today::Date

i = gToday(Date);

object i;

This class method creates instances of the Date class which represents the current
date contained within the system.

Example:

object x;

x = gToday(Date); /* x = the current date */

See also: FormatDate::Date, Dispose::Object

5.10.2 Date Instance Methods

A portion of the Date class’s functionality is obtained through its inheritance of the
LongInteger class. The remaining functionality is defined by the following specific
methods.

[AddDays]AddDays::Date

i = gAddDays(i, days);

object i;

long days;

186 Dynace Manual

This method is used to add an arbitrary number of days (days) to date i. Leap years
and the correct number of days in each month are accounted for. The value returned
is the object passed.

Example:

object dt;

dt = gNewWithLong(Date, 19940130L);

gAddDays(dt, 2L); /* dt contains 19940201 */

See also: AddMonths::Date, AddYears::Date

[AddMonths]AddMonths::Date

i = gAddMonths(i, m);

object i;

int m;

This method is used to add an arbitrary number of months (m) to date i. The correct
number of months in each year is accounted for. The value returned is the object
passed.

Example:

object dt;

dt = gNewWithLong(Date, 19940104L);

gAddMonths(dt, 2); /* dt contains 19940304 */

See also: AddDays::Date, AddYears::Date

[AddYears]AddYears::Date

i = gAddYears(i, y);

object i;

int y;

This method is used to add an arbitrary number of years (y) to date i. The value
returned is the object passed.

Chapter 5: Class Library Reference 187

Example:

object dt;

dt = gNewWithLong(Date, 19940104L);

gAddYears(dt, 2); /* dt contains 19960104 */

See also: AddDays::Date, AddMonths::Date

[ChangeDateValue]ChangeDateValue::Date

i = gChangeDateValue(i, dt);

object i;

long dt;

This method is used to change the date associated with an instance of the Date class.
Notice that this method returns the instance being passed. dt is the new date.

Example:

object x;

x = gNewWithLong(Date, 20000101L);

gChangeLongValue(x, 20000605L);

See also: ChangeLongValue::Number

[DateValue]DateValue::Date

dt = gDateValue(i);

object i;

long dt;

This method is used to obtain the long value that represents the date associated with
an instance the Date class. Note that this is one of the few generics which doesn’t
return a Dynace object. It returns a long.

Example:

object x;

long dt;

x = gNewWithLong(LongInteger, 20000605L);

dt = gDateValue(x); /* dt = 20000605L */

188 Dynace Manual

See also: LongValue::Number

[DayName]DayName::Date

s = gDayName(i);

object i;

object s;

This method returns an instance of the String class which represents the day of the
week associated with instance i.

Example:

object s, dt;

dt = gToday(Date);

s = gDayName(dt); /* s contains "Monday" (or whatever) */

See also: FormatDate::Date, MonthName::Date

[Difference]Difference::Date

r = gDifference(i, dt);

object i;

object dt;

long r;

This method is used to obtain the difference, in days, between two date objects. Leap
years and the correct number of days per month is accounted for.

Example:

object dt1, dt2;

long r;

dt1 = gNewWithLong(Date, 19940104L);

dt2 = gNewWithLong(Date, 19940204L);

r = gDifference(dt2, dt1); /* r = 31L */

Chapter 5: Class Library Reference 189

[FormatDate]FormatDate::Date

s = gFormatDate(i, fmt);

object i;

char *fmt;

object s;

This method returns an instance of the String class which is a formatted represen-
tation of the date associated with instance i. fmt is the format specification used
to determine the resulting String object. Each character in fmt is sequentially pro-
cessed and except for the character ‘%’, they are simply copied to the resulting String
object. Whenever this method encounters the ‘%’ character, the character following
is used to determine what aspect and format of the date represented by i should be
added to the resultant String object. It works much like the standard C printf.
The following table indicates the available formatting option characters:

% the % character

w the day of the week (Friday)

M the month name (June)

m short month name (Feb)

d day (8)

D day to two places (08)

y short year to two places (04)

Y full year (1994)

s day suffix (th)

n month number (6)

N month number to two places (06)

t current system time (10:05 AM)

Example:

object s, dt;

dt = gToday(Date);

s = gFormatDate(dt, "%w the %d%s of %M");

/* s contains "Monday the 1st of March" (or whatever) */

See also: MonthName::Date, DayName::Date

[Julian]Julian::Date

jdt = gJulian(i);

object i;

object jdt;

190 Dynace Manual

This method returns a Julian date representation of the date associated with instance
i.

Example:

object jdt, dt;

dt = gToday(Date);

jdt = gMonthName(dt); /* s contains a Julian Date */

See also: CalToJul::Date, JulToCal::Date

[MonthName]MonthName::Date

s = gMonthName(i);

object i;

object s;

This method returns an instance of the String class which represents the month of
the year associated with instance i.

Example:

object s, dt;

dt = gToday(Date);

s = gMonthName(dt); /* s contains "June" (or whatever) */

See also: FormatDate::Date, DayName::Date

[StringRepValue]StringRepValue::Date

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

Chapter 5: Class Library Reference 191

Example:

object x;

object s;

x = gNewWithLong(Date, 20000605L);

s = gStringRepValue(x); /* s represents "6/05/00" */

See also: PrintValue::Object, Print::Object, FormatDate::Date

[ValidDate]ValidDate::Date

r = gValidDate(i);

object i;

int r;

This method is used to determine the validity of a date. If i is a valid date 1 is
returned and 0 otherwise. Leap years and the number of days in each month are all
accounted for.

Example:

object dt;

int r;

dt = gNewWithLong(Date, 19940104L);

r = gValidDate(dt); /* r = 1 */

dt = gNewWithLong(Date, 19941404L);

r = gValidDate(dt); /* r = 0 */

dt = gNewWithLong(Date, 19940230L);

r = gValidDate(dt); /* r = 0 */

192 Dynace Manual

5.11 DateTime Class

The DateTime class uses multiple inheritance to inherit from both the Date and the Time

classes and is used to represent precise moments in time.

5.11.1 DateTime Class Methods

The DateTime class has two class methods to create instances.

[NewDateTime]NewDateTime::DateTime

i = gNewDateTime(Time, dt, tm);

long dt, tm;

object i;

This class method creates instances of the DateTime class. dt represents the initial
date value represented and tm represents the initial time value.

Example:

object x;

x = gNewWithLong(DateTime, 19990402L, 132345678L);

/* x = 4/02/1999 1:23:45.678 pm */

See also: Now::DateTime, Dispose::Object

[Now]Now::DateTime

i = gNow(DateTime);

object i;

This class method creates instances of the DateTime class which represents the current
time contained within the system.

Example:

object x;

x = gNow(DateTime); /* x = the current date and time */

See also: NewDateTime::DateTime, Dispose::Object

Chapter 5: Class Library Reference 193

5.11.2 DateTime Instance Methods

A portion of the DateTime class’s functionality is obtained through its inheritance of the
Date class and of the Time. The remaining functionality is defined by the following specific
methods.

[AddHours]AddHours::DateTime

i = gAddHours(i, hours);

object i;

long hours;

This method is used to add an arbitrary number of hours (hours) to date and time
i. Adding an hour that goes past midnight will cause the time to cycle around to
morning and add a day. Leap years and the correct number of days in each month
are accounted for. The value returned is the object passed.

Example:

object d;

d = gNewDateTime(DateTime, 19990402L, 234500000L);

gAddHours(d, 2L);

/* d contains 19990403L, 14500000L

(4/03/1999 1:45:00.000 am) */

See also: AddMilliseconds::DateTime, AddMinutes::DateTime,

AddSeconds::DateTime

[AddMilliseconds]AddMilliseconds::DateTime

i = gAddMilliseconds(i, m);

object i;

long m;

This method is used to add an arbitrary number of milliseconds (m) to date and time
i. Adding a millisecond that goes past midnight will cause the time to cycle around
to morning and add a day. Leap years and the correct number of days in each month
are accounted for. The value returned is the object passed.

194 Dynace Manual

Example:

object d;

d = gNewDateTime(DateTime, 19990402L, 234500000L);

gAddMilliseconds(d, 20L);

/* d contains 19990402L, 234500000L

(4/02/1999 11:45:00.020 pm) */

See also: AddHours::DateTime, AddMinutes::DateTime,

AddSeconds::DateTime

[AddMinutes]AddMinutes::DateTime

i = gAddMinutes(i, m);

object i;

long m;

This method is used to add an arbitrary number of minutes (m) to date and time
i. Adding a minute that goes past midnight will cause the time to cycle around to
morning and add a day. Leap years and the correct number of days in each month
are accounted for. The value returned is the object passed.

Example:

object d;

d = gNewDateTime(DateTime, 19990402L, 234500000L);

gAddMinutes(d, 20L);

/* d contains 19990403L, 500000L

(4/03/1999 1:05:00.000 am) */

See also: AddHours::DateTime, AddMilliseconds::DateTime,

AddSeconds::DateTime

[AddSeconds]AddSeconds::DateTime

i = gAddSeconds(i, s);

object i;

long s;

This method is used to add an arbitrary number of seconds (s) to date and time
i. Adding a second that goes past midnight will cause the time to cycle around to

Chapter 5: Class Library Reference 195

morning and add a day. Leap years and the correct number of days in each month
are accounted for. The value returned is the object passed.

Example:

object d;

d = gNewDateTime(DateTime, 19990402L, 234500000L);

gAddSeconds(d, 20L);

/* d contains 19990402L, 234520000L

(4/02/1999 11:45:20.000 pm) */

See also: AddHours::DateTime, AddMilliseconds::DateTime,

AddMinutes::DateTime

[ChangeDateTimeValues]ChangeDateTimeValues::DateTime

i = gChangeDateTimeValues(i, dt, tm);

object i;

long dt, tm;

This method is used to change the date and time values associated with an instance
of the DateTime class. Notice that this method returns the instance being passed. dt
is the new date value and tm is the new time value and.

Example:

object d;

d = gNewDateTime(DateTime, 19990402L, 234500000L);

gChangeDateTimeValues(d, 19981231L, 44500000L);

/* d contains 12/31/1998 4:45:00.000 am */

See also: ChangeLongValue::DateTime, NewDateTime::DateTime

[ChangeLongValue]ChangeLongValue::DateTime

i = gChangeLongValue(i, val);

object i;

long val;

This method is used to change the date value associated with an instance of the
DateTime class. Notice that this method returns the instance being passed. val is
the new date value. The time value associated with the instance of the DateTime

class is reset to 0L (midnight).

196 Dynace Manual

Example:

object d;

d = gNewDateTime(DateTime, 19990402L, 234500000L);

gChangeLongValue(tm, 19991231L);

/* d contains 12/31/1999 12:00:00.000 am */

See also: ChangeDateTimeValues::DateTime, NewDateTime::DateTime

[Compare]Compare::DateTime

r = gCompare(i, obj);

object i;

object obj;

int r;

This method is used by the generic container classes to determine the relationship of
the values represented by i and obj. r is -1 if the date / time represented by i is
less than the date / time represented by obj, 1 if the date / time value of i is greater
than obj, and 0 if they are equal.

See also: Hash::DateTime

[DateTimeDifference]DateTimeDifference::DateTime

i = gDateTimeDifference(i, d, dd, td);

object i, d;

long *dd, *td;

This method is used to obtain the difference, in days and milliseconds, between two
time objects. dd is loaded with the difference in days and td is loaded with the
difference in milliseconds. Notice that this method returns the instance being passed.

Example:

object d1, d2;

long dd, td;

d1 = gNewDateTime(DateTime, 19990402L, 234500000L);

d2 = gNewDateTime(DateTime, 19990403L, 234500111L);

gDateTimeDifference(d2, d1, &dd, &td);

/* dd = 1L, td = 111L */

Chapter 5: Class Library Reference 197

[DateTimeValues]DateTimeValues::DateTime

i = gDateTimeValues(i, dt, tm);

object i;

long *dt, *tm;

This method is used to obtain the long values that represent the date and time
associated with an instance the DateTime class. Notice that this method returns the
instance being passed.

Example:

object x;

long dt, tm;

x = gNewDateTime(DateTime, 19990402L, 234500000L);

gDateTimeValues(x, &dt, &tm);

/* dt = 19990402L and tm = 234500000L */

See also: NewDateTime::DateTime, ChangeDateTimeValues::Time

[FormatDateTime]FormatDateTime::DateTime

s = gFormatDateTime(i, dtFmt, tmFmt);

object i;

char *dtFmt;

char *tmFmt;

object s;

This method returns an instance of the String class which is a formatted representa-
tion of the date and time associated with instance i. dtFmt is the format specification
(see FormatDate::Date) used to determine the date portion of the resulting String

object. tmFmt is the format specification (see FormatTime::Time) used to determine
the time portion of the resulting String object.

Example:

object s, dt;

dt = gNow(DateTime);

s = gFormatDateTime(dt, "%w the %d%s of %M at ", "%h:%M %p");

/* s = "Monday the 1st of March at 9:45 am" (or whatever) */

See also: FormatDate::Date, FormatTime::Time

198 Dynace Manual

[Hash]Hash::DateTime

val = gHash(i);

object i;

int val;

This method is used by the generic container classes to obtain hash values for the
date / time object. val is a hash value between 0 and a large integer value.

See also: Compare::DateTime

[StringRepValue]StringRepValue::DateTime

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
time associated with i. This is often used to print or display the date and time. It is
also used by PrintValue::Object and indirectly by Print::Object (two methods
useful during the debugging phase of a project) in order to directly print an object’s
value.

Example:

object x;

object s;

x = gNewDateTime(DateTime, 19991231L, 234500000L);

s = gStringRepValue(x);

/* s represents "1999-12-31 11:45:00.000 pm" */

See also: PrintValue::Object, Print::Object

[ValidDateTime]ValidDateTime::DateTime

r = gValidDateTime(i);

object i;

int r;

This method is used to determine the validity of a date / time. If i is a valid date /
time 1 is returned and 0 otherwise.

Chapter 5: Class Library Reference 199

Example:

object d;

int r;

d = gNewDateTime(DateTime, 19991231L, 234500000L);

r = gValidDateTime(tm); /* r = 1 */

d = gNewDateTime(DateTime, 19941404L, 234500000L);

r = gValidDateTime(tm); /* r = 0 */

d = gNewDateTime(DateTime, 19991231L, 254500899L);

r = gValidDateTime(tm); /* r = 0 */

200 Dynace Manual

5.12 Dictionary Class

The Dictionary class combines the functionality of the Set and ObjectAssociation classes
in order to store a collection of arbitrary key/value pairs. The key may be any unique
Dynace object. The gHash and gCompare generics are used in order to access and compare
the objects.

This class is a subclass of the Set class and therefore inherits all of its functionality.

See the examples included with the Dynace system for an illustration of the use of the
Set/Dictionary related classes.

5.12.1 Dictionary Class Methods

There are no class methods for this class. It inherits the ability to create instances of itself
through its superclass, Set.

5.12.2 Dictionary Instance Methods

The instance methods associated with this class are used to add, retrieve and remove
key/value pairs from the Dictionary. Note that additional functionality may be obtained
through its superclass, Set.

[AddValue]AddValue::Dictionary

r = gAddValue(i, key, value);

object i;

object key

object value; /* or NULL */

object r;

This method is used to add a new key/value pair to the Dictionary instance (i). If
an object with the same key already exists in the Dictionary it will be left as is and
AddValue will return NULL. If the key/value objects are added AddValue will return
the ObjectAssociation instance created to represent the key/value pair passed.

key may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Dictionary.

See also: Find::Dictionary, FindValue::Dictionary,

RemoveObj::Dictionary

Chapter 5: Class Library Reference 201

[ChangeValueWithObj]ChangeValueWithObj::Dictionary

r = gChangeValueWithObj(i, key, value);

object i;

object key;

object value; /* or NULL */

object r;

This method is used to change the value associated with an existing key/value pair to
the Dictionary instance (i). key represents the identity of the pre-existing key/value
pair and value represents the new value to be associated with the key.

Normally, this method changes the value part of the association and returns the
previous value which is not disposed. If key doesn’t identify a pre-existing association,
this method simply returns NULL.

See also: Find::Dictionary, FindValue::Dictionary,

RemoveObj::Dictionary

[DeepDisposeObj]DeepDisposeObj::Dictionary

r = gDeepDisposeObj(i, key);

object i;

object key;

object r;

This method is used to remove and dispose of a key/value pair from a Dictionary.
If found and removed i is returned. If key is not found NULL is returned.

The key, value and ObjectAssociation used to bind the two are all deep disposed.

key may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Dictionary.

This method is the same as DisposeObj::Dictionary.

See also: RemoveObj::Dictionary

[Dispose]Dispose::Dictionary

r = gDispose(i);

object i;

object r; /* NULL */

202 Dynace Manual

This method is used to dispose of an entire Dictionary. It does not dispose of any of
the keys or values but does dispose of all the associations used to represent the pair.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: RemoveObj::Dictionary, DeepDispose::Set,

DisposeAllNodes::Dictionary

[DisposeAllNodes]DisposeAllNodes::Dictionary

i = gDisposeAllNodes(i);

object i;

This method is used to remove all objects in a Dictionary instance without disposing
of the instance itself. The objects in the Dictionary are simply disassociated from
the Dictionary instance and are not disposed.

The value returned is always the instance passed.

See also: DeepDisposeAllNodes::Set, Dispose::Dictionary

[DisposeObj]DisposeObj::Dictionary

r = gDisposeObj(i, key);

object i;

object key;

object r;

This method is used to remove and dispose of a key/value pair from a Dictionary.
If found and removed i is returned. If key is not found NULL is returned.

The key, value and ObjectAssociation used to bind the two are all deep disposed.

key may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Dictionary.

This method is the same as DeepDisposeObj::Dictionary.

See also: RemoveObj::Dictionary

Chapter 5: Class Library Reference 203

[Find]Find::Dictionary

r = gFind(i, key);

object i;

object key;

object r;

This method is used to find the instance of the ObjectAssociation class which is
used to represent the key/value pair stored under key in Dictionary i. If key is not
found NULL is returned.

key may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Dictionary.

See also: FindValue::Dictionary

[FindAddValue]FindAddValue::Dictionary

r = gFindAddValue(i, key, value);

object i;

object key;

object value; /* or NULL */

object r;

This method is used to find and return the instance of the ObjectAssociation class
used to represent the key/value pair stored under the key key. If it is not found a
new ObjectAssociation will be added and returned which represent the key/value
pair representing key and value.

key may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Dictionary.

See also: Find::Dictionary, FindValue::Dictionary

[FindValue]FindValue::Dictionary

r = gFindValue(i, key);

object i;

object key;

object r;

This method is used to find the value stored under key in Dictionary i. If key is
not found NULL is returned.

204 Dynace Manual

key may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Dictionary.

See also: Find::Dictionary

[RemoveObj]RemoveObj::Dictionary

r = gRemoveObj(i, key);

object i;

object key;

object r;

This method is used to remove a key/value pair from a Dictionary. If found and
removed i is returned. If key is not found NULL is returned.

The key and value are not disposed, however, the ObjectAssociation used to bind
the two is.

key may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Dictionary.

See also: DeepDisposeObj::Dictionary

Chapter 5: Class Library Reference 205

5.13 DoubleFloat Class

The DoubleFloat class is used to represent the C language double data type as a Dynace
object. It is a subclass of the Number class. Even though the DoubleFloat class implements
most of its own functionality, it is documented as part of the Number class because most of
the interface is the same for all subclasses of the Number class. Differences are documented
in this section.

5.13.1 DoubleFloat Class Methods

The DoubleFloat class has only one class method and it is used to create new instances of
itself.

[NewWithDouble]NewWithDouble::DoubleFloat

i = gNewWithDouble(DoubleFloat, val);

double val;

object i;

This class method creates instances of the DoubleFloat class. val is the initial value
of the number being represented.

The value returned is a Dynace instance object which represents the number passed.

Note that the default disposal methods are used by this class since there are no special
storage allocation requirements.

Example:

object pi;

pi = gNewWithDouble(DoubleFloat, 3.14159265358979);

See also: DoubleValue::Number, Dispose::Object

5.13.2 DoubleFloat Instance Methods

The instance methods associated with the DoubleFloat class provide a means of changing
and obtaining the value associated with an instance of the DoubleFloat class. Most of
the DoubleFloat class instance methods are documented in the Number class because of
their common interface with all other subclasses of the Number class. The remainder are
documented in this section.

[Round]Round::DoubleFloat

i = gRound(i, pl);

object i;

int pl;

206 Dynace Manual

This method is used to round the value represented by i to pl decimal places. The
object returned is the rounded object passed.

Example:

object pi;

pi = gNewWithDouble(DoubleFloat, 3.14159265358979);

gRound(pi, 4); /* pi = 3.1416 */

See also: DoubleValue::Number, Truncate::DoubleFloat

[Truncate]Truncate::DoubleFloat

i = gTruncate(i, pl);

object i;

int pl;

This method is used to truncate the value represented by i to pl decimal places. The
object returned is the truncated object passed.

Example:

object pi;

pi = gNewWithDouble(DoubleFloat, 3.14159265358979);

gTruncate(pi, 4); /* pi = 3.1415 */

See also: DoubleValue::Number, Round::DoubleFloat

Chapter 5: Class Library Reference 207

5.14 DoubleFloatArray Class

This class, which is a subclass of NumberArray, is used to represent arbitrary shaped arrays
of the C language double data type in an efficient manner. Although this class implements
much of its own functionality it is documented within the NumberArray and Array classes
because the interface is shared by all subclasses of the NumberArray class.

208 Dynace Manual

5.15 File Class

This class is used to encapsulate the standard C stream IO facility. It is a subclass of
Stream and enables access to these routines through an interface which is common to all
subclasses of Stream.

Although this class implements most of its own functionality, it is documented as part
of the Stream class because most of the interface is the same for all subclasses of Stream.
Differences are documented in this section.

5.15.1 File Class Methods

The class methods associated with this class are methods used to open or create files.

[Flush]Flush::File

i = gFlush(File);

int i;

This class method is used to flush all files opened with the stream IO system to disk.
It returns the number of opened streams.

Example:

gFlush(File);

See also: instance Flush::File

[OpenFile]OpenFile::File

i = gOpenFile(File, name, mode);

char *name; /* file name */

char *mode; /* file mode */

object i;

This class method is used to open or create a normal file using the C stream IO
facility. The name and mode parameters correspond to the local C library function
fopen. The local library manuals can more completely describe those arguments.
The value returned is an object which refers to the opened file. If the file cannot be
opened a NULL will be returned.

Example:

object f;

f = gOpenFile(File, "myfile", "r");

Chapter 5: Class Library Reference 209

See also: OpenTempFile::File, Dispose::File, Read::Stream

[OpenTempFile]OpenTempFile::File

i = gOpenTempFile(File);

object i;

This class method is used to create a tempoary file using the C stream IO facility.
The location of the file will be dictated by the TMP or TEMP environment variables (in
that order). If those variables are not defined then the current directory is used. The
file is created with the "w+" binary mode.

The value returned is an object which refers to the opened file. Since this is a tem-
porary file, disposing of this object will also cause the file to be removed. If the file
cannot be opened a NULL will be returned.

Example:

object f;

f = gOpenTempFile(File);

See also: SetTempSubDir::File, OpenFile::File, Dispose::File,

Read::Stream

[SetTempSubDir]SetTempSubDir::File

i = gSetTempSubDir(File, dir);

char *dir;

object i;

This class method is used to specify a path for the system to use to create temporary
files (using gOpenTempFile. The given directory is appended to the normal system
temp path. For example, if the system path is ‘/tmp’ and dir is passed "App" then
the path used will be ‘/tmp/App’.

The value returned is File.

Example:

gSetTempSubDir(File, "Application");

See also: OpenTempFile::File

210 Dynace Manual

5.15.2 File Instance Methods

The instance methods associated with this class are used to read and write data to the file
represented by the instance.

Although this class implements most of its own functionality, it is documented as part
of the Stream class because most of the interface is the same for all subclasses of Stream.
Differences are documented in this section.

[DeepDispose]DeepDispose::File

r = gDeepDispose(i);

object i;

object r; /* NULL */

This method is used to close the file associated with the instance and dispose of the
instance. It performs the same function as Dispose::File.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Dispose::File, OpenFile::File

[Dispose]Dispose::File

r = gDispose(i);

object i;

object r; /* NULL */

This method is used to close the file associated with the instance and dispose of the
instance. It performs the same function as DeepDispose::File.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: DeepDispose::File, OpenFile::File

[Flush]Flush::File

i = gFlush(file);

object file;

int i;

This method is used to flush the stream associated with file to disk. It returns zero
on success.

Chapter 5: Class Library Reference 211

Example:

gFlush(file);

See also: class Flush::File

[Name]Name::File

n = gName(i);

object i;

char *n; /* the file name */

This method is used to obtain the name of the file represented by i.

[PointerValue]PointerValue::File

fp = gPointerValue(i);

object i;

FILE *fp;

This method is used to obtain the file pointer associated with i.

212 Dynace Manual

5.16 FindFile Class

The FindFile class is designed to provide a portable means of enumerating over the file
names contained within a particular file system directory. Currently, this class has only
been ported to the DOS and all Windows environments. There is no current support for
Unix or Macintosh environments.

5.16.1 FindFile Class Methods

The only class method used in this class is one to create instances of itself.

[NewFindFile]NewFindFile::FindFile

i = gNewFindFile(FindFile, name, attr);

char *name;

int attr;

object i;

This class method creates instances of the FindFile class. Each such instance is
initialized to enable the instance to enumerate through all the file names which meet
a particular set of parameters.

The name parameter is used to specify the pattern of the file name to be searched for.
This pattern may or may not contain a relative or absolute directory path but must
contain some wildcard characters (such as “?” and “*”).

The attr parameter is used to narrow the search to file names which contain certain
attributes. The list of available attribute type (which should be or’ed together) is as
follows:

FF_FILE include regular files

FF_DIRECTORY include directories

FF_READWRITE include files or directories in which

you have read/write permission

FF_READONLY include files or directories in which

you only have read permission

FF_ARCHIVE_ONLY don’t include files/directories which

don’t have their archive bit set

FF_HIDDEN include hidden files

FF_SYSTEM include system files

The new instance is returned.

Chapter 5: Class Library Reference 213

Example:
object ff;

char *file;

ff = gNewFindFile(FindFile, "*.c", FF_FILE | FF_READWRITE);

while (file = gNextFile(ff)) {

do something with file

}

gDispose(ff);

See also: NextFile::FindFile

5.16.2 FindFile Instance Methods

The instance methods associated with this class provide a means for sequentially enumer-
ating through the selected file names and obtaining some degree of information associated
with each particular file.

[Attributes]Attributes::FindFile

attr = gAttributes(ff);

object ff;

unsigned attr;

This method is used to obtain attribute information relating to the last selected file
returned from NextFile. The attribute flags are those defined under NewFindFile.
If no valid file has been returned from NextFile this function simply returns 0.

Example:
object ff;

char *file;

unsigned attr;

ff = gNewFindFile(FindFile, "*.*",

FF_FILE | FF_DIRECTORY | FF_READWRITE);

while (file = gNextFile(ff)) {

attr = gAttributes(ff);

if (attr & FF_DIRECTORY)

handle a directory

else if (attr & FF_FILE)

handle a file

}

gDispose(ff);

See also: NewFindFile::FindFile, NextFile::FindFile,

WriteTime::FindFile

214 Dynace Manual

[Length]Length::FindFile

len = gLength(ff);

object ff;

long len;

This method is used to obtain the length or size (in bytes) of the file relating to the
last selected file returned from NextFile. If no valid file has been returned from
NextFile this function simply returns -1.

Example:
object ff;

char *file;

long len;

ff = gNewFindFile(FindFile, "*.c", FF_FILE | FF_READWRITE);

while (file = gNextFile(ff)) {

len = gLength(ff);

}

gDispose(ff);

See also: Attributes::FindFile, NextFile::FindFile

[Name]Name::FindFile

nam = gName(ff);

object ff;

char *nam;

This method is used to obtain the name of the last file found via NextFile. It will
be the same name as returned from NextFile. If no valid file has been returned from
NextFile this function simply returns NULL.

Example:
object ff;

char *file;

ff = gNewFindFile(FindFile, "*.c", FF_FILE | FF_READWRITE);

while (gNextFile(ff)) {

file = gName(ff);

}

gDispose(ff);

See also: NextFile::FindFile

Chapter 5: Class Library Reference 215

[NextFile]NextFile::FindFile

nam = gNextFile(ff);

object ff;

char *nam;

This method is used to obtain the next file name in the sequential list specified when
using NewFindFile. It also changes the context associated with the object ff such
that all other methods operated on ff will refer to the file returned in the last call to
this method. In spite of the name of this method, it is also used to obtain the first
file name in the list, therefore, this method must be called prior to any other method
on ff in order to obtain the first file context.

This method returns the name of the file associated with the file context this method
establishes. If there is no first file or additional files this method returns NULL.

See also: NewFindFirst::FindFile

[WriteTime]WriteTime::FindFile

tim = gWriteTime(ff);

object ff;

long tim;

This method is used to obtain the date and time the file associated with the ff context
was last written to. The value returned can be typecast to the common time_t type
and represents the number of seconds past some date like 1970. If no valid file context
was setup via NextFile, this method returns -1.

See also: Attributes::FindFile, NextFile::FindFile

216 Dynace Manual

5.17 FloatArray Class

This class, which is a subclass of NumberArray, is used to represent arbitrary shaped arrays
of the C language float data type in an efficient manner. Although this class implements
much of its own functionality it is documented within the NumberArray and Array classes
because the interface is shared by all subclasses of the NumberArray class.

Chapter 5: Class Library Reference 217

5.18 IntegerArray Class

This class, which is a subclass of NumberArray, is used to represent arbitrary shaped arrays
of the C language int data type in an efficient manner. Although this class implements
much of its own functionality it is documented within the NumberArray and Array classes
because the interface is shared by all subclasses of the NumberArray class.

218 Dynace Manual

5.19 IntegerAssociation Class

This class is a subclass of Association and is used to represent an association between
a C language int and an arbitrary Dynace object. It performs all the functions as the
LookupKey and ObjectAssociation classes and is used in conjunction with the Set and
Dictionary classes. The purpose of this class is to provide an efficient mechanism to form
a common association.

See the examples included with the Dynace system for an illustration of the use of the
Set/Dictionary related classes.

5.19.1 IntegerAssociation Class Methods

The only class method associated with this class is one needed to create new instances of
itself.

[NewWithIntObj]NewWithIntObj::IntegerAssociation

i = gNewWithIntObj(IntegerAssociation, key, val);

int key;

object val; /* or NULL */

object i;

This class method creates instances of the IntegerAssociation class. key is used to
initialize the key associated with the instance created and val is used to initialize its
associated value.

The new instance is returned.

5.19.2 IntegerAssociation Instance Methods

The instance methods associated with this class are used to obtain, change and print the key
and value associated with the instance. Additional functionality, although implemented by
this class, is documented in IntegerAssociation’s superclass, Association. This is done
because of the common interface these methods share with all subclasses of Association.

[ChangeIntKey]ChangeIntKey::IntegerAssociation

i = gChangeIntKey(i, key);

object i;

int key;

This method is used to change the key associated with instance i. key is the new
key. The old key is simply replaced. This method returns i.

See also: IntKey::IntegerAssociation,
ChangeValue::IntegerAssociation

Chapter 5: Class Library Reference 219

[ChangeValue]ChangeValue::IntegerAssociation

old = gChangeValue(i, val);

object i;

object val; /* or NULL */

object old;

This method is used to change the value associated with i to a value, val. The
old value is simply no longer associated with the instance. It is not disposed. This
method returns the old value being replaced.

See also: Value::IntegerAssociation,
ChangeIntKey::IntegerAssociation

[DeepCopy]DeepCopy::IntegerAssociation

c = gDeepCopy(i);

object i, c;

This method is used to create a new instance of the IntegerAssociation class which
contains a copy of the value from the original IntegerAssociation. DeepCopy is used
to create the copy of the value. The new IntegerAssociation instance is returned.

See also: Copy::Object

[DeepDispose]DeepDispose::IntegerAssociation

r = gDeepDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of a IntegerAssociation instance. It also disposes
of the value associated with the instance by the use of its DeepDispose method.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Dispose::Object

220 Dynace Manual

[IntKey]IntKey::IntegerAssociation

key = gIntKey(i);

object i;

int key;

This method is used to obtain the integer key associated with instance i.

See also: ChangeIntKey::IntegerAssociation

[StringRepValue]StringRepValue::IntegerAssociation

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

See also: PrintValue::Object, Print::Object

[Value]Value::IntegerAssociation

val = gValue(i);

object i;

object val;

This method is used to obtain the value associated with i.

See also: ChangeValue::IntegerAssociation,
IntKey::IntegerAssociation

Chapter 5: Class Library Reference 221

5.20 IntegerDictionary Class

This class combines the functionality of the Set and IntegerAssociation classes in order
to store a collection of arbitrary key/value pairs.

The difference between this class and the Dictionary class is that this class only accepts
C language int values as keys. This class provides an efficient and simple to use means of
representing a commonly needed collection.

This class is a subclass of the Set class and therefore inherits all of its functionality.

See the examples included with the Dynace system for an illustration of the use of the
Set/Dictionary related classes.

5.20.1 IntegerDictionary Class Methods

There are no class methods for this class. It inherits the ability to create instances of itself
through its superclass, Set.

5.20.2 IntegerDictionary Instance Methods

The instance methods associated with this class are used to add, retrieve and remove
key/value pairs from the Dictionary. Note that additional functionality may be obtained
through its superclass, Set.

[AddInt]AddInt::IntegerDictionary

r = gAddInt(i, key, value);

object i;

int key

object value;

object r;

This method is used to add a new key/value pair to the Dictionary instance (i). If
an object with the same key already exists in the Dictionary it will be left as is and
AddInt will return NULL. If the key/value objects are added AddInt will return the
IntegerAssociation instance created to represent the key/value pair passed.

See also: FindInt::IntegerDictionary,
FindValueInt::IntegerDictionary,

ChangeValueWithInt::IntegerDictionary,

RemoveInt::IntegerDictionary

222 Dynace Manual

[ChangeValueWithInt]ChangeValueWithInt::IntegerDictionary

r = gChangeValueWithInt(i, key, value);

object i;

int key

object value;

object r;

This method is used to change the value associated with an existing key/value pair to
the IntegerDictionary instance (i). key represents the identity of the pre-existing
key/value pair and value represents the new value to be associated with the key.

Normally, this method changes the value part of the association and returns the
previous value which is not disposed. If key doesn’t identify a pre-existing association,
this method simply returns NULL.

See also: FindInt::IntegerDictionary,
FindValueInt::IntegerDictionary,

RemoveInt::IntegerDictionary

[DeepDisposeInt]DeepDisposeInt::IntegerDictionary

r = gDeepDisposeInt(i, key);

object i;

int key;

object r;

This method is used to remove and dispose of a key/value pair from a Dictionary.
If found and removed i is returned. If key is not found NULL is returned.

The value and IntegerAssociation used to bind the two are all deep disposed.

This method is the same as DisposeInt::IntegerDictionary.

See also: RemoveInt::IntegerDictionary

[Dispose]Dispose::IntegerDictionary

r = gDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of an entire Dictionary. It does not dispose of any
of the values but does dispose of all the associations used to represent the pair.

Chapter 5: Class Library Reference 223

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: RemoveInt::IntegerDictionary, DeepDispose::Set,

DisposeAllNodes::IntegerDictionary

[DisposeAllNodes]DisposeAllNodes::IntegerDictionary

i = gDisposeAllNodes(i);

object i;

This method is used to remove all objects in an IntegerDictionary instance without
disposing of the instance itself. The objects in the IntegerDictionary are simply
disassociated from the IntegerDictionary instance and are not disposed.

The value returned is always the instance passed.

See also: DeepDisposeAllNodes::Set, Dispose::IntegerDictionary

[DisposeInt]DisposeInt::IntegerDictionary

r = gDisposeInt(i, key);

object i;

int key;

object r;

This method is used to remove and dispose of a key/value pair from a Dictionary.
If found and removed i is returned. If key is not found NULL is returned.

The value and IntegerAssociation used to bind the two are all deep disposed.

This method is the same as DeepDisposeInt::IntegerDictionary.

See also: RemoveInt::IntegerDictionary

[FindInt]FindInt::IntegerDictionary

r = gFindInt(i, key);

object i;

int key;

object r;

224 Dynace Manual

This method is used to find the instance of the IntegerAssociation class which is
used to represent the key/value pair stored under key in Dictionary i. If key is not
found NULL is returned.

See also: FindValueInt::IntegerDictionary

[FindAddInt]FindAddInt::IntegerDictionary

r = gFindAddInt(i, key, value);

object i;

int key;

object value;

object r;

This method is used to find and return the instance of the IntegerAssociation class
used to represent the key/value pair stored under the key key. If it is not found a
new IntegerAssociation will be added and returned which represent the key/value
pair representing key and value.

See also: FindInt::IntegerDictionary,
FindValueInt::IntegerDictionary

[FindValueInt]FindValueInt::IntegerDictionary

r = gFindValueInt(i, key);

object i;

int key;

object r;

This method is used to find the value stored under key in Dictionary i. If key is
not found NULL is returned.

See also: FindInt::IntegerDictionary

[RemoveInt]RemoveInt::IntegerDictionary

r = gRemoveInt(i, key);

object i;

int key;

object r;

This method is used to remove a key/value pair from a Dictionary. If found and
removed i is returned. If key is not found NULL is returned.

Chapter 5: Class Library Reference 225

The value is not disposed, however, the IntegerAssociation used to bind the two
is.

See also: DeepDisposeInt::IntegerDictionary

226 Dynace Manual

5.21 Link Class

The Link class is used to represent a single link in a doubly linked list. It is normally used
in conjunction with the LinkList class in order to manage arbitrary objects on a doubly
linked list data structure.

Since instances of the Link class only contain enough information to describe the link,
the Link class can be thought of as an abstract class. It is never used by itself (instances
of it are never created). Instead a new class would be created which would have the Link

class as a superclass. This new class would describe the data items which would be stored
at each link. The Link class would keep track of its place in the linked list.

The Link class also has a subclass called LinkValue which allows a single arbitrary
object to be stored at each link.

See the examples included with the Dynace system for an illustration of the use of the
doubly linked list related classes.

5.21.1 Link Class Methods

The Link class has only a single class method. That method is used to create and initialize
new instances of itself.

[New]New::Link

i = gNew(Link);

object i;

This class method creates instances of the Link class. It is usually only used by
subclasses of the Link class. The new link will not point to anything. It will just be
an empty link.

This method is actually just inherited from Object in order to create a null link.

The value returned is the instance object created (the new link).

See also: Dispose::Link

5.21.2 Link Instance Methods

The instances methods associated with the Link class are used to link, unlink, move and
dispose of particular instances of the Link class or (more often) one of its subclasses.

[AddAfter]AddAfter::Link

i = gAddAfter(i, lnk);

object i;

object lnk;

Chapter 5: Class Library Reference 227

This method is used to insert a new link (lnk) after another link (i) on the linked
list which link i is on. In order to accomplish this it modifies pointers in link i, link
lnk and the link (if any) which is after link i in the associated linked list structure.

Link lnk must not already be a member of another list.

This method returns its first argument.

See also: AddBefore::Link

[AddBefore]AddBefore::Link

i = gAddBefore(i, lnk);

object i;

object lnk;

This method is used to insert a new link (lnk) before another link (i) on the linked
list which link i is on. In order to accomplish this it modifies pointers in link i, link
lnk and the link (if any) which is prior to link i in the associated linked list structure.

Link lnk must not already be a member of another list.

This method returns its first argument.

See also: AddAfter::Link, ChangeNext::Link,

ChangePrevious::Link

[ChangeNext]ChangeNext::Link

i = gChangeNext(i, nxt);

object i;

object nxt;

This method is used to change the next pointer of a particular link represented by
instance i. nxt is the link to be pointed to or NULL. This method does not effect the
instance pointed to by nxt.

This method returns the link passed in its first argument.

See also: ChangePrevious::Link, Next::Link

228 Dynace Manual

[ChangePrevious]ChangePrevious::Link

i = gChangePrevious(i, prev);

object i;

object prev;

This method is used to change the previous link pointer of a particular link represented
by instance i. prev is the link to be pointed to or NULL. This method does not effect
the instance pointed to by prev.

This method returns the link passed in its first argument.

See also: ChangeNext::Link, Previous::Link

[Copy]Copy::Link

c = gCopy(i);

object i, c;

This method is used to create a new object which is of the same type as its argument.
However, the new link will not point to the same links. It will be uninitialized.

The new object is returned.

See also: DeepCopy::Link, Copy::Object

[DeepCopy]DeepCopy::Link

This method performs the same function as Copy::Link.

[DeepDispose]DeepDispose::Link

r = gDeepDispose(i);

object i;

object r; /* NULL */

This method is used to unlink and dispose of a link object. It performs the same
function as the Dispose method.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Dispose::Link, Remove::Link

Chapter 5: Class Library Reference 229

[Dispose]Dispose::Link

r = gDispose(i);

object i;

object r; /* NULL */

This method is used to unlink and dispose of a link object. It performs the same
function as the DeepDispose method.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: DeepDispose::Link, Remove::Link

[InitLink]InitLink::Link

lnk = gInitLink(lnk, lst, prev, nxt);

object lnk;

object lst;

object prev;

object nxt;

This method is used to initialize a link. lst is the list it will be associated with and
prev and nxt are used to initialize the link pointers. Each argument must either be
a link or NULL.

The link passed is returned.

See also: Previous::Link, Next::Link

[List]List::Link

lst = gList(i);

object i;

object lst;

This method is used to obtain the list object which link i is on. NULL will be returned
if the link is not on a list.

See also: Previous::Link, Next::Link, InitLink::Link

230 Dynace Manual

[MoveAfter]MoveAfter::Link

i = gMoveAfter(i, lnk);

object i;

object lnk;

This method is used to unlink an arbitrary (located anywhere on the list) link (i)
from any list and relink it immediately after link lnk which may be on the same or
a different list. If link i wasn’t originally on a list, it will simply be added after link
lnk.

Link i is returned.

See also: MoveBefore::Link, MoveBeginning::Link

[MoveBefore]MoveBefore::Link

i = gMoveBefore(i, lnk);

object i;

object lnk;

This method is used to unlink an arbitrary (located anywhere on the list) link (i)
from any list and relink it immediately before link lnk which may be on the same or
a different list. If link i wasn’t originally on a list, it will simply be added before link
lnk.

Link i is returned.

See also: MoveAfter::Link, MoveEnd::Link

[MoveBeginning]MoveBeginning::Link

i = gMoveBeginning(i);

object i;

This method is used to unlink an arbitrary (located anywhere on the list) link and
relink it at the beginning of the linked list it’s associated with.

The object passed is returned unless the link was not on a list. In that case NULL will
be returned.

See also: MoveEnd::Link, MoveAfter::Link

Chapter 5: Class Library Reference 231

[MoveEnd]MoveEnd::Link

i = gMoveEnd(i);

object i;

This method is used to unlink an arbitrary (located anywhere on the list) link and
relink it at the end of the linked list it’s associated with.

The object passed is returned unless the link was not on a list. In that case NULL will
be returned.

See also: MoveBeginning::Link, MoveBefore::Link

[Next]Next::Link

nxt = gNext(i);

object i;

object nxt;

This method is used to obtain the link following the link represented by i. If no next
link exists, NULL will be returned.

See also: Previous::Link, Nth::Link, List::Link

[Nth]Nth::Link

nxt = gNth(lnk, idx);

object lnk;

int idx;

object nxt;

This method is used to provide a mechanism to index into a linked list in a manner
similar to an array. If idx is positive this method returns the link which is idx links
after lnk. If idx is negative this method returns the link which is idx links prior to
lnk. If idx is zero lnk is returned, and if idx represents a position beyond the end
of the list NULL is returned.

See also: Previous::Link, Next::Link, List::Link

232 Dynace Manual

[Previous]Previous::Link

prev = gPrevious(i);

object i;

object prev;

This method is used to obtain the link prior to the link represented by i. If no such
link exists, NULL will be returned.

See also: Next::Link, Nth::Link, List::Link

[Remove]Remove::Link

i = gRemove(i);

object i;

This method is used to remove a link (i) from a linked list. In addition to effecting
link i, it also effects the pointers associated with the links which link i points to in
its next and previous pointers (which may be NULL) to make the removal complete.

This method should have no effect on a link which is not on a list.

This method returns the link passed.

See also: ChangeNext::Link, ChangePrevious::Link

[StringRep]StringRep::Link

s = gStringRep(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
object i and its value. This is often used to print or display a representation of an
object. It is also used by by Print::Object (a method useful during the debugging
phase of a project) in order to directly print an object to a stream.

See also: Print::Object, PrintValue::Object, StringRepValue::Link

Chapter 5: Class Library Reference 233

[StringRepValue]StringRepValue::Link

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

Example:

object x;

object s;

x = gNew(Link);

s = gStringRepValue(x);

See also: PrintValue::Object, Print::Object

234 Dynace Manual

5.22 LinkList Class

Instances of this class are used to coordinate and handle doubly linked lists as a whole.
It is used with instances of the Link class (or one of its subclasses) which represent the
individual links of the list.

The Link class is a superclass of this class. See that class for functionality which is
inherited by this class.

See the examples included with the Dynace system for an illustration of the use of the
doubly linked list related classes.

5.22.1 LinkList Class Methods

There is only one class method associated with this class and it is used to create new
instances of the class.

[New]New::LinkList

i = gNew(LinkList);

object i;

This class method creates a new and empty linked list object.

The value returned is the instance object created (the new LinkList).

See also: Dispose::LinkList

5.22.2 LinkList Instance Methods

The instance methods associated with this class perform functions to add, change, inquire,
enumerate and dispose of links associated with the linked list. They also provide information
such as how many links are on the list.

[AddFirst]AddFirst::LinkList

i = gAddFirst(i, lnk);

object i;

object lnk;

This method is used to add a new link to the beginning of the linked list. i is the
linked list, lnk is the new link (an instance of the Link class or one of its subclasses).

The value returned is the linked list passed (i).

See also: AddLast::LinkList, DisposeFirst::LinkList

Chapter 5: Class Library Reference 235

[AddLast]AddLast::LinkList

i = gAddLast(i, lnk);

object i;

object lnk;

This method is used to add a new link to the end of the linked list. i is the linked
list, lnk is the new link (an instance of the Link class or one of its subclasses).

The value returned is the linked list passed (i).

See also: AddFirst::LinkList, DisposeLast::LinkList

[Copy]Copy::LinkList

c = gCopy(i);

object i, c;

This method is used to create a new instance of the LinkList class with copies of all
the links which were on i. These copies are made via Copy so any values associated
with the link are the same objects as those on i.

The new LinkList instance is returned.

See also: DeepCopy::LinkList, Copy::Object

[DeepCopy]DeepCopy::LinkList

c = gDeepCopy(i);

object i, c;

This method is used to create a new instance of the LinkList class with copies of
all the links and their associated values which were on i. These copies are made via
DeepCopy so the values associated with the links are also copied.

The new LinkList instance is returned.

See also: Copy::LinkList, Copy::Object

236 Dynace Manual

[DeepDispose]DeepDispose::LinkList

r = gDeepDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of the linked list and all its associated links. The
DeepDispose method is used to dispose of each link on the linked list.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Dispose::LinkList, Dispose::Object

[DeepDisposeAllNodes]DeepDisposeAllNodes::LinkList

i = gDeepDisposeAllNodes(i);

object i;

This method is used to dispose of all the links on a linked list without disposing of
the linked list object itself. The DeepDispose method is used to dispose of the links
so all the objects contained on the links will be deep disposed as well.

This method returns the object passed.

See also: DeepDispose::LinkList, DisposeAllNodes::LinkList

[DeepDisposeFirst]DeepDisposeFirst::LinkList

i = gDeepDisposeFirst(i);

object i;

This method is used to unlink and dispose of the first link in the linked list i. If there
is no first link this method simply returns.

The first link is disposed of by executing the DeepDispose method on it.

This method returns the linked list passed.

See also: DeepDisposeLast::LinkList, DisposeFirst::LinkList

Chapter 5: Class Library Reference 237

[DeepDisposeLast]DeepDisposeLast::LinkList

i = gDeepDisposeLast(i);

object i;

This method is used to unlink and dispose of the last link in the linked list i. If there
are no links this method simply returns.

The last link is disposed of by executing the DeepDispose method on it.

This method returns the linked list passed.

See also: DeepDisposeFirst::LinkList, DisposeLast::LinkList

[Dispose]Dispose::LinkList

r = gDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of the linked list and all its associated links. The
Dispose method is used to dispose of the links without disposing of the objects
contained on the links.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: DeepDispose::LinkList, DisposeAllNodes::LinkList

[DisposeAllNodes]DisposeAllNodes::LinkList

i = gDisposeAllNodes(i);

object i;

This method is used to dispose of all the links on a linked list without disposing of the
linked list object itself. The Dispose method is used to dispose of the links without
disposing of the objects contained on the links.

This method returns the object passed.

See also: Dispose::LinkList, DeepDisposeAllNodes::LinkList

238 Dynace Manual

[DisposeFirst]DisposeFirst::LinkList

i = gDisposeFirst(i);

object i;

This method is used to unlink and dispose of the first link in the linked list i. If there
is no first link this method simply returns.

The first link is disposed of by executing the Dispose method on it.

This method returns the linked list passed.

See also: DisposeLast::LinkList, DeepDispose::LinkList,

RemoveFirst::LinkList

[DisposeLast]DisposeLast::LinkList

i = gDisposeLast(i);

object i;

This method is used to unlink and dispose of the last link in the linked list i. If there
are no links this method simply returns.

The last link is disposed of by executing the Dispose method on it.

This method returns the linked list passed.

See also: DisposeFirst::LinkList, DeepDispose::LinkList,

RemoveLast::LinkList

[First]First::LinkList

lnk = gFirst(i);

object i;

object lnk;

This method is used to obtain the first link on linked list i. If there are no links, this
method returns NULL.

This method does not modify the linked list or the link returned.

See also: Last::LinkList, RemoveFirst::LinkList

Chapter 5: Class Library Reference 239

[IncNelm]IncNelm::LinkList

i = gIncNelm(i, inc);

object i;

int lnc;

Each linked list automatically keeps track of the number of links on it. This method
is used to change that value by inc. It is mainly used internally to keep the number
accurate and would not normally be used externally.

[Last]Last::LinkList

lnk = gLast(i);

object i;

object lnk;

This method is used to obtain the last link on linked list i. If there are no links, this
method returns NULL.

This method does not modify the linked list or the link returned.

See also: First::LinkList, RemoveLast::LinkList

[Remove]Remove::LinkList

This method has been superseded by Remove::Link.

See also: Dispose::Link, RemoveFirst::LinkList

[RemoveFirst]RemoveFirst::LinkList

lnk = gRemoveFirst(i);

object i;

object lnk;

This method is used to unlink the first link from the linked list i and return it. The
link will no longer be linked on the list. However, the link is not disposed. If there
are no links this method simply returns NULL.

This method returns the link removed.

See also: RemoveLast::LinkList, DisposeFirst::LinkList

240 Dynace Manual

[RemoveLast]RemoveLast::LinkList

lnk = gRemoveLast(i);

object i;

object lnk;

This method is used to unlink the last link from the linked list i and return it. The
link will no longer be linked on the list. However, the link is not disposed. If there
are no links this method simply returns NULL.

This method returns the link removed.

See also: RemoveFirst::LinkList, DisposeLast::LinkList

[Sequence]Sequence::LinkList

s = gSequence(i);

object i;

object s;

This method takes an instance of the LinkList class (i) and returns an instance of
the LinkSequence class (s). The link list represented by i is not effected by this
operation. The link sequence item, s, is used to enumerate through all the links in
link list i. See the LinkSequence class for documentation of other methods needed
to use s.

Example:

object ll; /* linked list */

object s; /* link sequence */

object lnk; /* one link */

/* ll must be initialized previously */

for (s=gSequence(ll) ; lnk = gNext(s) ;) {

/* do something with link lnk */

}

See also: Next::LinkSequence

Chapter 5: Class Library Reference 241

[Size]Size::LinkList

sz = gSize(i);

object i;

int sz;

This method is used to obtain the number of links on the linked list.

[StringRep]StringRep::LinkList

s = gStringRep(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
object i and its value. This is often used to print or display a representation of an
object. It is also used by by Print::Object (a method useful during the debugging
phase of a project) in order to directly print an object to a stream.

This method obtains the values of each link by calling StringRepValue on each link.

See also: Print::Object, PrintValue::Object

242 Dynace Manual

5.23 LinkObject Class

The LinkObject class is a subclass of the LinkList class. Since this class inherits much of
its functionality from the LinkList and Link classes, see those classes for additional func-
tionality. It is used in conjunction with the LinkValue class in order to manage arbitrary
objects on a doubly linked list data structure.

The difference between this class and the LinkList class is that the LinkList class
deals with instances of the Link class (or one of its subclasses) which may contain arbitrary
objects and the LinkObject class deals with arbitrary objects directly. There is no need
to deal with link objects at all. While this simplifies the usage of a linked lists quite a bit
it comes at the expense of flexibility. However, since the LinkList class is a superclass
of the LinkObject class you can often use the inherited functionality of the LinkList

class in conjunction with the LinkObject object. It is, therefore, recommended that the
LinkObject class be used whenever possible to simplify linked list operations

This class (LinkObject) inherits much of its functionality from its superclass (LinkList),
therefore, in addition to the specific documentation on this class please also refer to the
documentation of its superclass.

See the examples included with the Dynace system for an illustration of the use of the
doubly linked list related classes.

5.23.1 LinkObject Class Methods

The LinkObject class has no specific class methods. It inherits all of its abilities from its
superclass, LinkList.

5.23.2 LinkObject Instance Methods

The instance methods associated with this class perform functions to add, inquire and enu-
merate objects associated with the linked list. Since this class is a subclass of the LinkList
class, additional functionality is inherited from it. The LinkList class documentation
should, therefore, be consulted.

[AddFirst]AddFirst::LinkObject

i = gAddFirst(i, obj);

object i;

object obj;

This method is used to add a new link to the beginning of the list, i, containing the
arbitrary object obj. The list object, i, is returned.

Chapter 5: Class Library Reference 243

Example:

object ll, obj;

ll = gNew(LinkObject);

obj = gNewWithInt(ShortInteger, 44);

gAddFirst(ll, obj);

See also: AddLast::LinkObject, First::LinkObject

[AddLast]AddLast::LinkObject

i = gAddLast(i, obj);

object i;

object obj;

This method is used to add a new link to the end of the list, i, containing the arbitrary
object obj. The list object, i, is returned.

Example:

object ll, obj;

ll = gNew(LinkObject);

obj = gNewWithInt(ShortInteger, 44);

gAddLast(ll, obj);

See also: AddFirst::LinkObject, Last::LinkObject

[First]First::LinkObject

obj = gFirst(i);

object i;

object obj;

This method is used to obtain the object stored in the first link of the list i. If there
are no links on the list this method will return NULL. The list, i, is not effected by
this operation.

244 Dynace Manual

Example:

object ll, obj, obj2;

ll = gNew(LinkObject);

obj = gNewWithInt(ShortInteger, 44);

gAddFirst(ll, obj);

obj2 = gFirst(ll);

/* obj and obj2 are the same object */

See also: AddFirst::LinkObject, Last::LinkObject

[GetValues]GetValues::LinkObject

ll = vGetValues(ll, ...);

object ll;

This method is used to extract numerous values from a LinkObject instance. It does
this without modifing the list. Each argument must be a pointer to a variable which
is to hold one of the values. The first variable gets the first object on the list and the
second gets the second, etc. The argument list must end in NULL to signify the end.

If there are more variables than links on the list the remaining variables will be set
to NULL. If there are more elements on the list than variables the remiaining list
elements are ignored.

The LinkObject instance passed is returned unaltered.

Example:

object ll, obj1, obj2;

object obj3, obj4;

obj1 = gNewWithInt(ShortInteger, 44);

obj2 = gNewWithInt(ShortInteger, 66);

ll = vMakeList(LinkObject, obj1, obj2, NULL);

vGetValues(ll, &obj3, &obj4, NULL);

See also: MakeList::LinkObject, Nth::LinkObject

[Last]Last::LinkObject

obj = gLast(i);

object i;

object obj;

Chapter 5: Class Library Reference 245

This method is used to obtain the object stored in the last link of the list i. If there
are no links on the list this method will return NULL. The list, i, is not effected by
this operation.

Example:

object ll, obj, obj2;

ll = gNew(LinkObject);

obj = gNewWithInt(ShortInteger, 44);

gAddLast(ll, obj);

obj2 = gLast(ll);

/* obj and obj2 are the same object */

See also: AddLast::LinkObject, First::LinkObject

[MakeList]MakeList::LinkObject

obj = vMakeList(LinkObject, ...);

object obj;

This method is used to create a new LinkObject containing all the objects listed in
the method call. For example, if there are five objects listed, the returned LinkObject

will be a list containing five links, each with an object associated with it.

Since this is a variable argument method you must tell the system when there are no
more arguments by using a last argument of NULL. GetValues can be used to take
the list back apart. All the other LinkObject methods may be used as well. The
value returned is the new LinkObject instance.

Example:

object ll, obj1, obj2;

obj1 = gNewWithInt(ShortInteger, 44);

obj2 = gNewWithInt(ShortInteger, 66);

ll = vMakeList(LinkObject, obj1, obj2, NULL);

See also: GetValues::LinkObject

[Nth]Nth::LinkObject

See [Nth::Link], page 231,

246 Dynace Manual

[Pop]Pop::LinkObject

obj = gPop(lst);

object lst;

object obj;

This method is used to obtain the first element of a list while removing it from the
list at the same time. It works in conjunction with gPush to utilize a list as a stack.
obj is either the first object on the list or NULL if the list was empty.

Example:

object ll, obj, obj2;

ll = gNew(LinkObject);

obj = gNewWithInt(ShortInteger, 44);

gPush(ll, obj);

obj2 = gPop(ll);

See also: Push::LinkObject

[Push]Push::LinkObject

lst = gPush(lst, obj);

object lst;

object obj;

This method is used to utilize a linklist as a stack. Pushing is the same as adding a
new link to the beginning of the list. Object obj is added (pushed) on list lst. The
list object, lst, is returned. This method is the same as gAddFirst.

Example:

object ll, obj;

ll = gNew(LinkObject);

obj = gNewWithInt(ShortInteger, 44);

gPush(ll, obj);

See also: Pop::LinkObject

Chapter 5: Class Library Reference 247

[Sequence]Sequence::LinkObject

s = gSequence(i);

object i;

object s;

This method takes an instance of the LinkObject class (i) and returns an instance
of the LinkObjectSequence class (s). The link list represented by i is not effected
by this operation. The link sequence item, s, is used to enumerate through all the
objects in link list i. See the LinkObjectSequence class for documentation of other
methods needed to use s.

The difference between the Sequence and SequenceLinksmethods in this class is that
the Sequence method provides a means to enumerate over the objects in the linked
list and the SequenceLinks provides a means to enumerate over the links which hold
the objects in the list.

Example:

object ll; /* linked list */

object s; /* link object sequence */

object obj; /* an object */

/* ll must be initialized previously */

for (s=gSequence(ll) ; obj = gNext(s) ;) {

/* do something with obj */

}

See also: Next::LinkObjectSequence, SequenceLinks::LinkObject

[SequenceLinks]SequenceLinks::LinkObject

s = gSequenceLinks(i);

object i;

object s;

This method takes an instance of the LinkObject class (i) and returns an instance
of the LinkSequence class (s). The link list represented by i is not effected by this
operation. The link sequence item, s, is used to enumerate through all the links in
link list i. See the LinkSequence class for documentation of other methods needed
to use s.

The difference between the Sequence and SequenceLinksmethods in this class is that
the Sequence method provides a means to enumerate over the objects in the linked

248 Dynace Manual

list and the SequenceLinks provides a means to enumerate over the links which hold
the objects in the list.

Example:

object ll; /* linked list */

object s; /* link sequence */

object lnk; /* a link */

/* ll must be initialized previously */

for (s=gSequenceLinks(ll) ; lnk = gNext(s) ;) {

/* do something with link lnk */

}

See also: Next::LinkSequence, Sequence::LinkObject

Chapter 5: Class Library Reference 249

5.24 LinkObjectSequence Class

This class is a subclass of Sequence and is used to provide a mechanism to enumerate
through all the objects on the links in a linked list structure without effecting the structure.

The linked list structure is usually represented by instances of the LinkObject class.
Typically, the Sequence instance method of this class is used to create the instances of the
LinkObjectSequence class.

5.24.1 LinkObjectSequence Class Methods

There is only one class method associated with this class. It is used to create new instances
of itself and is normally only called by sequence methods associated with the LinkObject

class.

[NewWithObj]NewWithObj::LinkObjectSequence

i = gNewWithObj(LinkObjectSequence, lnk);

object lnk;

object i;

This class method creates instances of the LinkObjectSequence class. It is normally
only called by the sequence method associated with the LinkObject class. lnk is the
first link in the list, and i is the sequence instance.

See also: Next::LinkObjectSequence, Sequence::LinkObject

5.24.2 LinkObjectSequence Instance Methods

This class only has a single instance method which is used to enumerate through object on
a list.

[Next]Next::LinkObjectSequence

obj = gNext(i);

object i;

object obj;

This method is used to enumerate through the objects contained within the links on a
linked list. Each time Next is called the following object on the linked list is returned.
It does this in a non-destructive way so the associated linked list is not effected.

When Next is called after the last object has been returned (or if there are no links
on the list) it will return NULL and automatically dispose of the sequence object i.
Therefore, the only time Dispose would be needed (if the garbage collector weren’t
being used) would be if the entire list was not enumerated.

250 Dynace Manual

Example:

object ll; /* linked object list */

object s; /* link sequence */

object obj; /* an object */

/* ll must be initialized previously */

for (s=gSequence(ll) ; obj = gNext(s) ;) {

/* do something with object obj */

}

See also: Sequence::LinkObject

Chapter 5: Class Library Reference 251

5.25 LinkSequence Class

This class is a subclass of Sequence and is used to provide a mechanism to enumerate
through all the links in a linked list structure without effecting the structure.

The linked list structure is usually represented by instances of the LinkList or
LinkObject classes. Typically, instance methods of these classes are used to create
the instances of the LinkSequence class. These methods have names which begin with
Sequence.

5.25.1 LinkSequence Class Methods

There is only one class method associated with this class. It is used to create new instances
of itself and is normally only called by sequence methods associated with the LinkList or
LinkObject classes.

[NewWithObj]NewWithObj::LinkSequence

i = gNewWithObj(LinkSequence, lnk);

object lnk;

object i;

This class method creates instances of the LinkSequence class. It is normally only
called by sequence methods associated with the LinkList or LinkObject classes. lnk
is the first link in the list, and i is the sequence instance.

See also: Next::LinkSequence, Sequence::LinkList

5.25.2 LinkSequence Instance Methods

This class only has a single instance method which is used to enumerate through links on
a list.

[Next]Next::LinkSequence

lnk = gNext(i);

object i;

object lnk;

This method is used to enumerate through the links on a linked list. Each time Next is
called the following link on the linked list is returned. It does this in a non-destructive
way so the associated linked list is not effected.

When Next is called after the last link has been returned (or if there are no links
on the list) it will return NULL and automatically dispose of the sequence object i.
Therefore, the only time Dispose would be needed (if the garbage collector weren’t
being used) would be if the entire list was not enumerated.

252 Dynace Manual

Example:

object ll; /* linked list */

object s; /* link sequence */

object lnk; /* one link */

/* ll must be initialized previously */

for (s=gSequence(ll) ; lnk = gNext(s) ;) {

/* do something with link lnk */

}

See also: Sequence::LinkList, SequenceLinks::LinkObject

Chapter 5: Class Library Reference 253

5.26 LinkValue Class

The LinkValue class is a subclass of the Link class. It is used in conjunction with the
LinkList class in order to manage arbitrary objects on a doubly linked list data structure.

Like the Link class, it is used to represent a single link on a doubly linked list. However,
the LinkValue class has the additional capability to store a single arbitrary object at each
link. Therefore, the LinkValue class may be used without creating a subclass of it.

This class (LinkValue) inherits much of its functionality from its superclass (Link),
therefore, in addition to the specific documentation on this class please also refer to the
documentation of its superclass.

See the examples included with the Dynace system for an illustration of the use of the
doubly linked list related classes.

5.26.1 LinkValue Class Methods

The LinkValue class has only a single class method. That method is used to create and
initialize new instances of itself.

[NewWithObj]NewWithObj::LinkValue

i = gNewWithObj(LinkValue, item);

object item;

object i;

This class method creates instances of the LinkValue class. item is the object to be
associated with the new link.

The value returned is the instance object created (the new link).

See also: Dispose::Link, DeepDispose::LinkValue

5.26.2 LinkValue Instance Methods

The instances methods associated with the LinkValue class are used to link, unlink, move
and dispose of particular instances of the LinkValue class. The majority of its linking type
functionality is inherited from its superclass, Link.

[ChangeValue]ChangeValue::LinkValue

i = gChangeValue(i, obj);

object i;

object obj;

This method is used to change the object associated with a link. i is the instance of
the LinkValue class, and obj is the new object to be associated with it. Any previous
association is simply disassociated (not disposed).

254 Dynace Manual

This method returns i.

See also: Value::LinkValue, NewWithObj::LinkValue

[DeepCopy]DeepCopy::LinkValue

c = gDeepCopy(i);

object i, c;

This method is used to create a new instance of the LinkValue class which contains
a copy of the value associated with the link. DeepCopy is used to create the copied
value. The new LinkValue instance is returned.

Note that the new link returned will not be associated with any list. It will just be
an unlinked link.

See also: Copy::Object

[DeepDispose]DeepDispose::LinkValue

r = gDeepDispose(i);

object i;

object r; /* NULL */

This instance method is used to perform a deep disposal of an instance of the
LinkValue class. It does this by calling gDeepDispose on the item associated with
the link and then calling the link’s superclass to dispose of the LinkValue instance.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Dispose::Link

[StringRep]StringRep::LinkValue

s = gStringRep(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
object i and its value. This is often used to print or display a representation of an
object. It is also used by by Print::Object (a method useful during the debugging
phase of a project) in order to directly print an object to a stream.

Chapter 5: Class Library Reference 255

See also: Print::Object, PrintValue::Object,

StringRepValue::LinkValue

[StringRepValue]StringRepValue::LinkValue

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

See also: PrintValue::Object, Print::Object

[Value]Value::LinkValue

obj = gValue(i);

object i;

object obj;

This method is used to obtain the object associated with a link. i is the instance of
the LinkValue class, and obj is the object associated with it.

See also: ChangeValue::LinkValue, NewWithObj::LinkValue

256 Dynace Manual

5.27 LongArray Class

This class, which is a subclass of NumberArray, is used to represent arbitrary shaped arrays
of the C language long data type in an efficient manner. Although this class implements
much of its own functionality it is documented within the NumberArray and Array classes
because the interface is shared by all subclasses of the NumberArray class.

Chapter 5: Class Library Reference 257

5.28 LongInteger Class

The LongInteger class is used to represent the C language long data type as a Dynace
object. It is a subclass of the Number class. Even though the LongInteger class implements
most of its own functionality, it is documented as part of the Number class because most of
the interface is the same for all subclasses of the Number class. Differences are documented
in this section.

5.28.1 LongInteger Class Methods

The LongInteger class has only one class method and it is used to create new instances of
itself.

[NewWithLong]NewWithLong::LongInteger

i = gNewWithLong(LongInteger, val);

long val;

object i;

This class method creates instances of the LongInteger class. val is the initial value
of the integer being represented.

The value returned is a Dynace instance object which represents the integer passed.

Note that the default disposal methods are used by this class since there are no special
storage allocation requirements.

Example:

object x;

x = gNewWithLong(LongInteger, 55L);

See also: LongValue::Number, Dispose::Object

5.28.2 LongInteger Instance Methods

The instance methods associated with the LongInteger class provide a means of changing
and obtaining the value associated with an instance of the LongInteger class. All of the
LongInteger class instance methods are documented in the Number class because of their
common interface with all other subclasses of the Number class.

258 Dynace Manual

5.29 LookupKey Class

The LookupKey class, which is a subclass of Association, is used to represent an object
which contains a key. It is normally used in conjunction with the ObjectAssociation, Set
and Dictionary classes in order to manage a group of arbitrary objects.

Since instances of the LookupKey class only contain enough information to describe the
key, the LookupKey class can be thought of as an abstract class. It is never used by itself
(instances of it are never created). Instead a new class would be created which would have
the LookupKey class as a superclass. This new class would describe the data items which
would be stored at each link. The LookupKey class would keep track of the key to the
object. Alternatively, a new class with the same methods as this class could be created and
used with the Set and Dictionary classes.

The LookupKey class also has a subclass called ObjectAssociation which associates a
single arbitrary object with the key.

See the examples included with the Dynace system for an illustration of the use of the
Set/Dictionary related classes.

5.29.1 LookupKey Class Methods

This class has only a single class method which is used to create and initialize instances of
itself. Although this class can handle NULL key values, their use is discouraged.

[NewWithObj]NewWithObj::LookupKey

i = gNewWithObj(LookupKey, key);

object key;

object i;

This class method creates instances of the LookupKey class. key is used to initialize
the key associated with the instance created. The new instance is returned.

5.29.2 LookupKey Instance Methods

The instance methods associated with this class are used access, change, dispose and print
the key associated with the instances of this class. Additional functionality, although imple-
mented by this class, is documented in LookupKey’s superclass, Association. This is done
because of the common interface these methods share with all subclasses of Association.

[ChangeKey]ChangeKey::LookupKey

old = gChangeKey(i, key);

object i;

object key;

object old;

Chapter 5: Class Library Reference 259

This method is used to change the key associated with instance i. key is the new
key. The old key is simply replaced, it is not disposed. This method returns the old
key object.

See also: Key::LookupKey

[DeepCopy]DeepCopy::LookupKey

c = gDeepCopy(i);

object i, c;

This method is used to create a new instance of the LookupKey class which contains
a copy of the key value from the original LookupKey. DeepCopy is used to create the
copy of the value. The new LookupKey instance is returned.

See also: Copy::Object

[DeepDispose]DeepDispose::LookupKey

r = gDeepDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of instance i as well as the key associated with it. It
disposes of the key by calling the DeepDispose method on it.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Dispose::Object

[Key]Key::LookupKey

key = gKey(i);

object i;

object key;

This method is used to obtain the key associated with instance i.

See also: ChangeKey::LookupKey

260 Dynace Manual

[StringRepValue]StringRepValue::LookupKey

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

See also: PrintValue::Object, Print::Object

Chapter 5: Class Library Reference 261

5.30 LowFile Class

This class is used to encapsulate the standard C low level IO facility. It is a subclass of
Stream and enables access to these routines through an interface which is common to all
subclasses of Stream.

Although this class implements most of its own functionality, it is documented as part
of the Stream class because most of the interface is the same for all subclasses of Stream.
Differences are documented in this section.

5.30.1 LowFile Class Methods

The one class method associated with this class is the method used to open or create a file.

[OpenLowFile]OpenLowFile::LowFile

i = gOpenLowFile(LowFile, name, oflag, pmode);

char *name; /* file name */

int oflag;

int pmode;

object i;

This class method us used to open or create a normal file using the C low level IO
facility. name is the file name to be opened and may also be an instance of the
String class. The name, oflag and pmode parameters correspond to the local C
library function open. The local library manuals can more completely describe those
arguments. The value returned is an object which refers to the opened file. If the file
cannot be opened a NULL will be returned.

Example:

object f;

f = gOpenLowFile(LowFile, "myfile", O_CREAT|O_WRONLY,

S_IREAD|S_IWRITE);

See also: Dispose::LowFile, Read::Stream

5.30.2 LowFile Instance Methods

The instance methods associated with this class are used to read and write data to the file
represented by the instance.

Although this class implements most of its own functionality, it is documented as part
of the Stream class because most of the interface is the same for all subclasses of Stream.
Differences are documented in this section.

262 Dynace Manual

[DeepDispose]DeepDispose::LowFile

r = gDeepDispose(i);

object i;

object r; /* NULL */

This method is used to close the file associated with the instance and dispose of the
instance. It performs the same function as Dispose::LowFile.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Dispose::LowFile, OpenLowFile::LowFile

[Dispose]Dispose::LowFile

r = gDispose(i);

object i;

object r; /* NULL */

This method is used to close the file associated with the instance and dispose of the
instance. It performs the same function as DeepDispose::LowFile.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: DeepDispose::LowFile, OpenLowFile::LowFile

[FileHandle]FileHandle::LowFile

h = gFileHandle(i);

object i;

int h;

This method is used to obtain the file handle associated with i.

[Name]Name::LowFile

n = gName(i);

object i;

char *n; /* the file name */

This method is used to obtain the name of the file represented by i.

Chapter 5: Class Library Reference 263

5.31 Number Class

The Number class is an abstract class used to combine common functionality of the primitive
C numeric data types. Although most of the functionality is actually implemented in the
subclasses of the Number class, they are documented here because of their common interface.

5.31.1 Number Class Methods

The Number class has no specific class methods.

5.31.2 Number Instance Methods

Although most of the instance methods are actually implemented in the subclasses of the
Number class, they are documented here because of their common interface. Regardless of
the numeric type being represented there has been every effort made to make a standard set
of interfaces to these data elements. Therefore, you are able to change the value associated
with an instance of the ShortInteger class to a double value of 3.141, however, when you
retrieve the double value you will only get back 3.0. (Of course you wouldn’t loose the
fractional part if you were dealing with an instance of the DoubleFloat class.)

[ChangeCharValue]ChangeCharValue::Number

i = gChangeCharValue(i, c);

object i;

int c;

This method is used to change the value associated with an instance of a subclass of
the Number class. Notice that this method returns the instance being passed. c is the
new value. If it is not the same type as i it will be converted.

Note that c is of type int. That is because if you pass a character to a generic func-
tion (which uses a variable argument declaration) the C language will automatically
promote it to an int.

Example:

object x;

x = gNewWithChar(Character, ’a’);

gChangeCharValue(x, ’b’);

See also: CharValue::Number

[ChangeDoubleValue]ChangeDoubleValue::Number

i = gChangeDoubleValue(i, val);

object i;

double val;

264 Dynace Manual

This method is used to change the value associated with an instance of a subclass of
the Number class. Notice that this method returns the instance being passed. val is
the new value. If it is not the same type as i it will be converted.

Example:

object x;

x = gNewWithDouble(DoubleFloat, 3.14);

gChangeDoubleValue(x, 7.56);

See also: NewWithDouble::DoubleFloat, DoubleValue::Number

[ChangeLongValue]ChangeLongValue::Number

i = gChangeLongValue(i, val);

object i;

long val;

This method is used to change the value associated with an instance of a subclass of
the Number class. Notice that this method returns the instance being passed. val is
the new value. If it is not the same type as i it will be converted.

Example:

object x;

x = gNewWithLong(LongInteger, 55L);

gChangeLongValue(x, 66L);

See also: NewWithLong::LongInteger, LongValue::Number

[ChangeShortValue]ChangeShortValue::Number

i = gChangeShortValue(i, s);

object i;

int s;

This method is used to change the value associated with an instance of a subclass of
the Number class. Notice that this method returns the instance being passed. s is the
new value. If it is not the same type as i it will be converted.

Note that s is of type int. That is because if you pass a short to a generic func-
tion (which uses a variable argument declaration) the C language will automatically
promote it to an int.

Chapter 5: Class Library Reference 265

Example:

object x;

x = gNewWithInt(ShortInteger, 55);

gChangeShortValue(x, 66);

See also: NewWithInt::ShortInteger, ShortValue::Number

[ChangeUShortValue]ChangeUShortValue::Number

i = gChangeUShortValue(i, s);

object i;

unsigned s;

This method is used to change the value associated with an instance of a subclass of
the Number class. Notice that this method returns the instance being passed. s is the
new value. If it is not the same type as i it will be converted.

Note that s is of type unsigned. That is because if you pass a short to a generic func-
tion (which uses a variable argument declaration) the C language will automatically
promote it to an unsigned.

Example:

object x;

x = gNewWithUnsigned(UnsignedShortInteger, 55);

gChangeUShortValue(x, 66);

See also: NewWithUnsigned::UnsignedShortInteger

[ChangeValue]ChangeValue::Number

i = gChangeValue(i, v);

object i;

object v;

This method is used to change the value associated with an instance of a subclass
of the Number class. Notice that this method returns the instance being passed. v

is an object which represents the new value. If it is not the same type as i it will
be converted. Note that this conversion does not effect the object v, just the value
changed in i.

266 Dynace Manual

Example:

object x, y;

x = gNewWithInt(ShortInteger, 88);

y = gNewWithDouble(DoubleFloat, 3.141);

gChangeValue(x, y); /* x is changed to 3 */

See also: ChangeCharValue::Number, ChangeShortValue::Number, etc.

[CharValue]CharValue::Number

c = gCharValue(i);

object i;

char c;

This method is used to obtain the char value associated with an instance of a subclass
of the Number class. Note that this is one of the few generics which doesn’t return a
Dynace object. It returns a char. If the instance does not represent an instance of
the Character class, the returned value of whatever is represented will be converted
to a char.

Example:

object x;

char c;

x = gNewWithChar(Character, ’a’);

c = gCharValue(x);

See also: NewWithChar::Character, ChangeValue::Number

[Compare]Compare::Number

r = gCompare(i, obj);

object i;

object obj;

int r;

This method is used by the generic container classes to determine the relationship of
the values represented by i and obj. r is -1 if the value represented by i is less than
the value represented by obj, 1 if the value of i is greater than obj, and 0 if they are
equal. obj may be any type of object.

Chapter 5: Class Library Reference 267

See also: Hash::Number

[DoubleValue]DoubleValue::Number

val = gDoubleValue(i);

object i;

double val;

This method is used to obtain the double value associated with an instance of a
subclass of the Number class. Note that this is one of the few generics which doesn’t
return a Dynace object. It returns a double. If the instance does not represent an
instance of the DoubleFloat class, the returned value of whatever is represented will
be converted to a double.

Example:

object x;

double val;

x = gNewWithDouble(DoubleFloat, 7.62);

val = gDoubleValue(x);

See also: NewWithDouble::DoubleFloat, ChangeValue::Number

[FormatNumber]FormatNumber::Number

val = gFormatNumber(i, msk, wth, dp);

object i; /* object to be formatted */

char *msk; /* format mask */

int wth; /* field width */

int dp; /* number of decimal places */

object val; /* String value */

This method is used to convert a number into a nicely formatted string. i is the
numeric object to be formatted.

msk is a character string which tells the formatter specific which formatting options
to use. Each character in the string represents a different option. The order is not
significant. The following table lists the available options:

268 Dynace Manual

B blank if zero

C add commas every 3 digits to the left of the decimal point

L left justify

P put parentheses around negative numbers

Z zero fill

D floating dollar sign

U upper-case letters in conversion (used in bases greater

than 10)

R add a percent sign to the end of the number

wth indicates the width of the field and hence the length of the resultant String

object. If wth <= 0 FormatNumber will calculate and use the minimum width which
will represent i.

dp indicates the number of decimal places that should appear in the string. If dp is
less than the number of decimal places in i rounding will occur. However if dp < 0
Nfmt will calculate and use the minimum number of decimal places required to fully
represent i.

The value returned by this method is an instance of the String class.

Example:

object x, y;

x = gNewWithDouble(DoubleFloat, 1234567.127);

y = gFormatNumber(x, "C", 0, 2); /* y = "1,234,567.13" */

See also: StringRepValue::Number

[Hash]Hash::Number

val = gHash(i);

object i;

int val;

This method is used by the generic container classes to obtain hash values for the
object. val is a hash value between 0 and a large integer value.

See also: Compare::Number

[LongValue]LongValue::Number

val = gLongValue(i);

object i;

long val;

Chapter 5: Class Library Reference 269

This method is used to obtain the long value associated with an instance of a subclass
of the Number class. Note that this is one of the few generics which doesn’t return a
Dynace object. It returns a long. If the instance does not represent an instance of the
LongInteger class, the returned value of whatever is represented will be converted
to a long.

Example:

object x;

long val;

x = gNewWithLong(LongInteger, 55L);

val = gLongValue(x);

See also: NewWithLong::LongInteger, ChangeLongValue::Number

[ShortValue]ShortValue::Number

s = gShortValue(i);

object i;

short s;

This method is used to obtain the short value associated with an instance of a
subclass of the Number class. Note that this is one of the few generics which doesn’t
return a Dynace object. It returns a short. If the instance does not represent an
instance of the ShortInteger class, the returned value of whatever is represented will
be converted to a short.

Example:

object x;

short s;

x = gNewWithInt(ShortInteger, 55);

s = gShortValue(x);

See also: NewWithInt::ShortInteger, ChangeShortValue::Number

[StringRepValue]StringRepValue::Number

s = gStringRepValue(i);

object i;

object s;

270 Dynace Manual

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

Example:

object x;

object s;

x = gNewWithInt(ShortInteger, 55);

s = gStringRepValue(x); /* s represents "55" */

See also: PrintValue::Object, Print::Object, FormatNumber::Number

[UnsignedShortValue]UnsignedShortValue::Number

s = gUnsignedShortValue(i);

object i;

unsigned short s;

This method is used to obtain the unsigned short value associated with an instance
of a subclass of the Number class. Note that this is one of the few generics which
doesn’t return a Dynace object. It returns an unsigned short. If the instance does
not represent an instance of the UnsignedShortInteger class, the returned value of
whatever is represented will be converted to an unsigned short.

Example:

object x;

unsigned short s;

x = gNewWithUnsigned(UnsignedShortInteger, 55);

s = gUnsignedShortValue(x);

See also: NewWithUnsigned::UnsignedShortInteger,
ChangeUShortValue::Number

Chapter 5: Class Library Reference 271

5.32 NumberArray Class

The NumberArray class, which is a subclass of Array, is an abstract class used to combine
common functionality of numeric arrays. Although most of the functionality is actually
implemented in the subclasses of the NumberArray class, they are documented here because
of their common interface.

5.32.1 NumberArray Class Methods

The only class method associated with this class is the New method which is used to create
new instances of numeric arrays. This method is actually implemented by subclasses of
NumberArray.

[New]New::NumberArray

ary = vNew(cls, rnk, ...)

object cls, ary;

unsigned rnk, ...

This class method is used to create a new numeric array. This method is actually
implemented by and should only be used with subclasses of the NumberArray class.
It is documented here because it is the same for all subclasses of the NumberArray

class.

cls would be one of the subclasses of the NumberArray class (such as
CharacterArray ShortArray UnsignedShortArray LongArray FloatArray or
DoubleFloatArray). This will indicate the type of array to be created.

rnk is the number of dimensions the new array should have. The remaining arguments
(each of type unsigned) indicates the size of each consecutive dimension. Note that
the number of arguments following rnk must be the same as the value in rnk.

ary is the new array object created and will be initialized to all zeros.

Example:

object ary;

ary = vNew(DoubleFloatArray, 2, 5, 4);

/* ary is a 5x4 double matrix */

5.32.2 NumberArray Instance Methods

The instance methods associated with this class are actually implemented by subclasses
of NumberArray. They are documented here because of their common interface with all
subclasses of NumberArray.

Regardless of the array type, each subclass of NumberArray implements a full complement
of methods necessary to deal with all C language data types. In all cases, if the value being
stored into an array is not the same as the array, the value being stored will be converted
to the correct type prior to the assignment. Also, if the desired return type is not the same

272 Dynace Manual

as the array type, the returned value will be converted. The type of the array will remain
unchanged. This naturally means that if you store the number 3.141 into an element of a
ShortArray you will only get 3.0 when attempting to get back a double value.

[ChangeCharValue]ChangeCharValue::NumberArray

ary = vChangeCharValue(ary, val, ...);

object ary;

int val;

unsigned ...

This method is used to change the value of one element of array ary which should be
an instance of a subclass of NumberArray.

val is the value which the element of the array should be changed to. The reason it
is of type int is because C promotes char to int when variable arguments are used.

The arguments after the val argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the val argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

If ary and val do not represent the same types, normal data type conversion will
take place during the assignment without changing the type of ary.

The value returned is the modified array passed.

Example:

object ary;

ary = vNew(CharacterArray, 2, 5, 4);

vChangeCharValue(ary, ’C’, 1, 2);

/* ary[1][2] <- ’C’ */

See also: ChangeValue::NumberArray, ChangeDoubleValue::NumberArray,

ChangeCharValue::NumberArray ...

[ChangeDoubleValue]ChangeDoubleValue::NumberArray

ary = vChangeDoubleValue(ary, val, ...);

object ary;

double val;

unsigned ...

Chapter 5: Class Library Reference 273

This method is used to change the value of one element of array ary which should
be an instance of a subclass of NumberArray. This method should also be used for
arrays of type FloatArray.

val is the value which the element of the array should be changed to.

The arguments after the val argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the val argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

If ary and val do not represent the same types, normal data type conversion will
take place during the assignment without changing the type of ary.

The value returned is the modified array passed.

Example:

object ary;

ary = vNew(DoubleFloatArray, 2, 5, 4);

vChangeDoubleValue(ary, 3.141, 1, 2);

/* ary[1][2] <- 3.141 */

See also: ChangeValue::NumberArray, ChangeCharValue::NumberArray,

ChangeShortValue::NumberArray ...

[ChangeLongValue]ChangeLongValue::NumberArray

ary = vChangeLongValue(ary, val, ...);

object ary;

long val;

unsigned ...

This method is used to change the value of one element of array ary which should be
an instance of a subclass of NumberArray.

val is the value which the element of the array should be changed to.

The arguments after the val argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the val argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

If ary and val do not represent the same types, normal data type conversion will
take place during the assignment without changing the type of ary.

The value returned is the modified array passed.

274 Dynace Manual

Example:

object ary;

ary = vNew(LongArray, 2, 5, 4);

vChangeLongValue(ary, 27L, 1, 2);

/* ary[1][2] <- 27L */

See also: ChangeValue::NumberArray, ChangeDoubleValue::NumberArray,

ChangeShortValue::NumberArray ...

[ChangeShortValue]ChangeShortValue::NumberArray

ary = vChangeShortValue(ary, val, ...);

object ary;

int val;

unsigned ...

This method is used to change the value of one element of array ary which should be
an instance of a subclass of NumberArray.

val is the value which the element of the array should be changed to. The reason it
is of type int is because C promotes short to int when variable arguments are used.

The arguments after the val argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the val argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

If ary and val do not represent the same types, normal data type conversion will
take place during the assignment without changing the type of ary.

The value returned is the modified array passed.

Example:

object ary;

ary = vNew(ShortArray, 2, 5, 4);

vChangeShortValue(ary, 27, 1, 2);

/* ary[1][2] <- 27 */

See also: ChangeValue::NumberArray, ChangeDoubleValue::NumberArray,

ChangeShortValue::NumberArray ...

Chapter 5: Class Library Reference 275

[ChangeUShortValue]ChangeUShortValue::NumberArray

ary = vChangeUShortValue(ary, val, ...);

object ary;

unsigned val;

unsigned ...

This method is used to change the value of one element of array ary which should be
an instance of a subclass of NumberArray.

val is the value which the element of the array should be changed to. The reason it is
of type unsigned is because C promotes unsigned short to unsigned when variable
arguments are used.

The arguments after the val argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the val argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

If ary and val do not represent the same types, normal data type conversion will
take place during the assignment without changing the type of ary.

The value returned is the modified array passed.

Example:

object ary;

ary = vNew(UnsignedShortArray, 2, 5, 4);

vChangeUShortValue(ary, 27U, 1, 2);

/* ary[1][2] <- 27U */

See also: ChangeValue::NumberArray, ChangeDoubleValue::NumberArray,

ChangeShortValue::NumberArray ...

[ChangeValue]ChangeValue::NumberArray

ary = vChangeValue(ary, val, ...);

object ary;

object val;

unsigned ...

This method is used to change the value of one element of array ary which should be
an instance of a subclass of NumberArray.

val should be an instance of the Number class and is the value which the element of
the array should be changed to.

276 Dynace Manual

The arguments after the val argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the val argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

If ary and val do not represent the same types, normal data type conversion will
take place during the assignment without changing the types of ary or val.

The value returned is the modified array passed.

Example:

object ary;

object v;

ary = vNew(DoubleFloatArray, 2, 5, 4);

v = gNewWithDouble(Double, 3.141);

vChangeValue(ary, v, 1, 2);

/* ary[1][2] <- 3.141 */

See also: ChangeDoubleValue::NumberArray,
ChangeCharValue::NumberArray ...

[CharValue]CharValue::NumberArray

v = vCharValue(ary, ...);

object ary;

unsigned ...

char v;

This method is used to obtain the char value associated with a particular element of
an instance of a subclass of the NumberArray class.

The arguments after the ary argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the ary argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

Note that this is one of the few generics which doesn’t return a Dynace object. It
returns a char. If the instance does not represent an instance of the CharacterArray
class, the returned value of whatever is represented will be converted to a char.

Chapter 5: Class Library Reference 277

Example:

object ary;

char v;

ary = vNew(CharacterArray, 2, 5, 4);

v = vCharValue(ary, 1, 2);

/* v has ary[1][2] */

See also: ChangeCharValue::NumberArray

[DoubleValue]DoubleValue::NumberArray

v = vDoubleValue(ary, ...);

object ary;

unsigned ...

double v;

This method is used to obtain the double value associated with a particular element
of an instance of a subclass of the NumberArray class.

The arguments after the ary argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the ary argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

Note that this is one of the few generics which doesn’t return a Dynace object.
It returns a double. If the instance does not represent an instance of the
DoubleFloatArray class, the returned value of whatever is represented will be
converted to a double.

Example:

object ary;

double v;

ary = vNew(DoubleFloatArray, 2, 5, 4);

v = vDoubleValue(ary, 1, 2);

/* v has ary[1][2] */

See also: ChangeDoubleValue::NumberArray

278 Dynace Manual

[LongValue]LongValue::NumberArray

v = vLongValue(ary, ...);

object ary;

unsigned ...

long v;

This method is used to obtain the long value associated with a particular element of
an instance of a subclass of the NumberArray class.

The arguments after the ary argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the ary argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

Note that this is one of the few generics which doesn’t return a Dynace object. It
returns a long. If the instance does not represent an instance of the LongArray class,
the returned value of whatever is represented will be converted to a long.

Example:

object ary;

long v;

ary = vNew(LongArray, 2, 5, 4);

v = vLongValue(ary, 1, 2);

/* v has ary[1][2] */

See also: ChangeLongValue::NumberArray

[ShortValue]ShortValue::NumberArray

v = vShortValue(ary, ...);

object ary;

unsigned ...

short v;

This method is used to obtain the short value associated with a particular element
of an instance of a subclass of the NumberArray class.

The arguments after the ary argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the ary argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

Chapter 5: Class Library Reference 279

Note that this is one of the few generics which doesn’t return a Dynace object. It
returns a short. If the instance does not represent an instance of the ShortArray

class, the returned value of whatever is represented will be converted to a short.

Example:

object ary;

short v;

ary = vNew(ShortArray, 2, 5, 4);

v = vShortValue(ary, 1, 2);

/* v has ary[1][2] */

See also: ChangeShortValue::NumberArray

[UnsignedShortValue]UnsignedShortValue::NumberArray

v = vUnsignedShortValue(ary, ...);

object ary;

unsigned ...

unsigned short v;

This method is used to obtain the unsigned short value associated with a particular
element of an instance of a subclass of the NumberArray class.

The arguments after the ary argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the ary argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

Note that this is one of the few generics which doesn’t return a Dynace object. It
returns an unsigned short. If the instance does not represent an instance of the
UnsignedShortArray class, the returned value of whatever is represented will be
converted to a unsigned short.

Example:

object ary;

unsigned short v;

ary = vNew(UnsignedShortArray, 2, 5, 4);

v = vUnsignedShortValue(ary, 1, 2);

/* v has ary[1][2] */

See also: ChangeUShortValue::NumberArray

280 Dynace Manual

5.33 ObjectArray Class

This class, which is a subclass of Array, is used to represent arbitrary shaped arrays of
Dynace objects in an efficient manner. By using ObjectArrays it is possible to have arrays
where each element contains an arbitrary object including another arrays. Therefore it is
possible to create nested or general arrays which are nested to arbitrary levels.

Much of the functionality of this class is implemented and documented in the Array

class. Differences are documented in this section.

5.33.1 ObjectArray Class Methods

The only class method implemented by this class is one used to create new ObjectArray

instances.

[New]New::ObjectArray

ary = vNew(ObjectArray, rnk, ...)

unsigned rnk, ...

object ary;

This class method is used to create a new instance of ObjectArray.

rnk is the number of dimensions the new array should have. The remaining arguments
(each of type unsigned) indicates the size of each consecutive dimension. Note that
the number of arguments following rnk must be the same as the value in rnk.

ary is the new array object created and will be initialized to all NULL’s.

Example:

object ary;

ary = vNew(ObjectArray, 2, 5, 4);

/* ary is a 5x4 matrix */

5.33.2 ObjectArray Instance Methods

Most instance functionality is obtained and documented in the Array class, however, func-
tionality which is particular to this class is documented in this section.

[Value]Value::ObjectArray

v = vValue(ary, ...);

object ary;

unsigned ...

object v;

Chapter 5: Class Library Reference 281

This method is used to obtain the object (or NULL) value associated with a particular
element of an instance of the ObjectArray class.

The arguments after the ary argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the ary argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

Example:

object ary;

object v;

ary = vNew(ObjectArray, 2, 5, 4);

v = vValue(ary, 1, 2);

/* v has ary[1][2] */

See also: ChangeValue::ObjectArray

[ChangeValue]ChangeValue::ObjectArray

ary = vChangeValue(ary, val, ...);

object ary;

object val;

unsigned ...

This method is used to change the value of one element of ObjectArray ary.

val is the value which the element of the array should be changed to (or NULL).

The arguments after the val argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the val argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

The value returned is the modified array passed.

Example:

object ary, v;

ary = vNew(ObjectArray, 2, 5, 4);

v = gNewWithInt(ShortInteger, 6);

vChangeValue(ary, v, 1, 2);

/* ary[1][2] <- v */

See also: Value::ObjectArray

282 Dynace Manual

5.34 ObjectAssociation Class

This class is a subclass of the LookupKey class. It is used to associate a value (an arbitrary
object) with a key. The documentation on the LookupKey should be consulted since much
of this class’s functionality is inherited from it.

See the examples included with the Dynace system for an illustration of the use of the
Set/Dictionary related classes.

5.34.1 ObjectAssociation Class Methods

The only class method associated with this class is the one used to create instances of the
ObjectAssociation class.

[NewWithObjObj]NewWithObjObj::ObjectAssociation

i = gNewWithObjObj(ObjectAssociation, key, val);

object key; /* or NULL */

object val; /* or NULL */

object i;

This class method creates instances of the ObjectAssociation class. key is used to
initialize the key associated with the instance created and val is used to initialize its
associated value. The new instance is returned.

5.34.2 ObjectAssociation Instance Methods

The instance methods associated with this class are used to obtain, change and print the
value associated with its instances. Much additional functionality is achieved through its
superclass, LookupKey.

[ChangeValue]ChangeValue::ObjectAssociation

old = gChangeValue(i, val);

object i;

object val; /* or NULL */

object old;

This method is used to change the value associated with ObjectAssociation i to a
value, val. The old value is simply no longer associated with the instance. It is not
disposed. This method returns the old value being replaced.

See also: Value::ObjectAssociation, ChangeKey::LookupKey

Chapter 5: Class Library Reference 283

[DeepCopy]DeepCopy::ObjectAssociation

c = gDeepCopy(i);

object i, c;

This method is used to create a new instance of the ObjectAssociation class which
contains a copy of the key and value from i. DeepCopy is used to create the copy of
the key and value. The new ObjectAssociation instance is returned.

See also: Copy::Object

[DeepDispose]DeepDispose::ObjectAssociation

r = gDeepDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of the instance passed as well as associated key and
value. The key and value are disposed of by using the DeepDispose method.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: DeepDispose::LookupKey

[StringRepValue]StringRepValue::ObjectAssociation

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

See also: PrintValue::Object, Print::Object

284 Dynace Manual

[Value]Value::ObjectAssociation

val = gValue(i);

object i;

object val;

This method is used to obtain the value associated with i.

See also: ChangeValue::ObjectAssociation, Key::LookupKey

Chapter 5: Class Library Reference 285

5.35 ObjectPool Class

The ObjectPool class provides a means to group arbitrary objects in a pool. This pool may
later be disposed causing all the objects contained in the pool to be disposed as well. This
is useful when running a particular functional module. All the new objects can be added to
a pool and then disposed en-mass when the functional unit is complete. This makes object
disposal a little easier to organize.

This class can maintain numerous pools as well as global pools.

5.35.1 ObjectPool Class Methods

Class methods for this class are used to create new pools as well as manage global pools.

[New]New::ObjectPool

i = gNew(ObjectPool);

object i;

This class method creates instances of the ObjectPool class. It is usually only used
by subclasses of the ObjectPool class. The new link will not point to anything. It
will just be an empty link.

This method is actually just inherited from Object in order to create a null link.

The value returned is the instance object created (the new link).

See also: Dispose::ObjectPool

286 Dynace Manual

5.36 Pipe Class

The Pipe class is used to provide a mechanism for threads to transfer information via a
uni-directional byte stream. If bi-directional communications is needed two pipes may be
used.

The Pipe class is a subclass of Stream and as such shares much of its functionality
with other subclasses of the Stream class. Although this class implements most of its own
functionality, it is documented as part of the Stream class because most of the interface is
the same for all subclasses of Stream. Differences are documented in this section.

See the relevant text for a detailed description of pipes.

5.36.1 Pipe Class Methods

There are only two class methods associated with the Pipe class. They are used to create
new pipes and find existing ones.

[FindStr]FindStr::Pipe

p = gFindStr(Pipe, name)

char *name;

object p;

This method is used to obtain a pipe object from its name. p is the pipe object found
or NULL if not found.

See also: New::Pipe

[New]New::Pipe

p = gNew(Pipe)

object p;

This class method is used to create and initialize a new unnamed pipe with a default
buffer size.

The value returned (p) is the pipe object created.

See also: NewWithStrInt::Pipe, FindStr::Pipe, Dispose::Pipe

Chapter 5: Class Library Reference 287

[NewWithStrInt]NewWithStrInt::Pipe

p = gNewWithStrInt(Pipe, name, bufsiz)

char *name;

int bufsiz;

object p;

This class method is used to create and initialize a new pipe.

name is the name of the new pipe and may be NULL if no name is to be associated
with the pipe.

bufsiz is the size of the buffer associated with the pipe. The size of the buffer
determines how many bytes of information may be buffered before a thread has to
held. If set too small the system will become inefficient because of the constant
switching between threads. Typical values are 128 or 512. It depends on the quantity
and size of the data being transferred.

The value returned (p) is the pipe object created. Other threads may obtain the
thread object by the use of the FindStr::Pipe method.

See also: New::Pipe, FindStr::Pipe, Dispose::Pipe

5.36.2 Pipe Instance Methods

The instance methods associated with this class are used to put bytes on the pipe, take
bytes off, dispose of, and obtain information about particular pipes.

Although this class implements most of its own functionality, it is documented as part
of the Stream class because most of the interface is the same for all subclasses of Stream.
Differences are documented in this section.

[DeepDispose]DeepDispose::Pipe

r = gDeepDispose(p)

object p;

object r; /* NULL */

This method is used to dispose of a pipe instance.
It is the same as Dispose::Pipe.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

288 Dynace Manual

[Dispose]Dispose::Pipe

r = gDispose(p)

object p;

object r; /* NULL */

This method is used to dispose of a pipe instance.
It is the same as DeepDispose::Pipe.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

[Length]Length::Pipe

n = gLength(p)

object p;

long n;

This method is used to determine the number of bytes currently on the pipe’s
buffer. Note that this method returns a long. This is to retain consistency with
Length::Stream.

See also: Room::Pipe, Size::Pipe

[Mode]Mode::Pipe

p = gMode(p, rblock, wblock)

object p;

int rblock; /* read block */

int wblock; /* write block */

This method is used to set the blocking attributes of a particular Pipe. A 1 turns on
the blocking and a 0 turns it off.

If blocking is turned on when a particular request for reading or writing occurs and
there is insufficient bytes or room available the thread requesting the read or write
will go into a hold state until another thread can either supply the requested bytes or
make the necessary room available. If blocking is not turned on then the particular
read or write request will only perform the operation with as many bytes is available
at the time. There will be no waiting.

The rblock flag effects read requests and the wblock effects write requests.

This method returns the Pipe instance passed.

Chapter 5: Class Library Reference 289

See also: Room::Pipe, Length::Pipe

[Room]Room::Pipe

n = gRoom(p)

object p;

int n;

This method is used to determine the number of bytes currently available on the
pipe’s buffer.

See also: Length::Pipe

[Size]Size::Pipe

n = gSize(p)

object p;

int n;

This method is used to determine the size of the buffer associated with a Pipe.

See also: Length::Pipe

290 Dynace Manual

5.37 Pointer Class

The Pointer class is used to represent the C language void * data type as a Dynace object.

5.37.1 Pointer Class Methods

The Pointer class has only one class method and it is used to create new instances of itself.

[NewWithPtr]NewWithPtr::Pointer

i = gNewWithPtr(Pointer, val);

void *val;

object i;

This class method creates instances of the Pointer class. val is the initial value of
the pointer being represented.

The value returned is a Dynace instance object which represents the pointer passed.

Note that the default disposal methods are used by this class since there are no special
storage allocation requirements.

Example:

object x;

int v = 3;

x = gNewWithPtr(Pointer, &v);

See also: PointerValue::Pointer, Dispose::Object

5.37.2 Pointer Instance Methods

The instance methods associated with the Pointer class provide a means of changing and
obtaining the value associated with an instance of the Pointer class. Methods are also
included to help the generic container classes to quickly access members of this class.

[ChangeValue]ChangeValue::Pointer

i = gChangeValue(i, val);

object i;

void *val;

This method is used to change the value associated with an instance of the Pointer
class. Notice that this method returns the instance being passed. val is the new
value.

Chapter 5: Class Library Reference 291

Example:

object x;

int v1 = 4, v2 = 5;

x = gNewWithPtr(Pointer, &v1);

gChangeValue(x, &v2);

See also: NewWithPtr::Pointer, PointerValue::Pointer

[Compare]Compare::Pointer

r = gCompare(i, obj);

object i;

object obj;

int r;

This method is used by the generic container classes to determine the equality of the
values represented by i and obj. r is -1 if the value represented by i is less than the
value represented by obj, 1 if the value of i is greater than obj, and 0 if they are
equal.

See also: Hash::Pointer

[Hash]Hash::Pointer

val = gHash(i);

object i;

int val;

This method is used by the generic container classes to obtain hash values for the
object. val is a hash value between 0 and a large integer value.

See also: Compare::Pointer

[PointerValue]PointerValue::Pointer

val = gPointerValue(i);

object i;

void *val;

292 Dynace Manual

This method is used to obtain the void * value associated with an instance of the
Pointer class. Note that this is one of the few generics which doesn’t return a Dynace
object. It returns a void * pointer.

Example:

object x;

int a = 4, *b;

void *val;

x = gNewWithPtr(Pointer, &a);

b = (int *) gPointerValue(x);

/* b now points to a */

See also: NewWithPtr::Pointer, ChangeValue::Pointer

[StringRepValue]StringRepValue::Pointer

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

Example:

object x;

object s;

x = gNewWithPtr(Pointer, NULL);

s = gStringRepValue(x);

See also: PrintValue::Object, Print::Object

Chapter 5: Class Library Reference 293

5.38 PointerArray Class

This class, which is a subclass of Array, is used to represent arbitrary shaped arrays of
arbitrary C language pointers in an efficient manner.

Much of the functionality of this class is implemented and documented in the Array

class. Differences are documented in this section.

5.38.1 PointerArray Class Methods

The only class method implemented by this class is one used to create new PointerArray

instances.

[New]New::PointerArray

ary = vNew(PointerArray, rnk, ...)

unsigned rnk, ...

object ary;

This class method is used to create a new instance of PointerArray.

rnk is the number of dimensions the new array should have. The remaining arguments
(each of type unsigned) indicates the size of each consecutive dimension. Note that
the number of arguments following rnk must be the same as the value in rnk.

ary is the new array object created and will be initialized to all NULL’s.

Example:

object ary;

ary = vNew(PointerArray, 2, 5, 4);

/* ary is a 5x4 matrix */

5.38.2 PointerArray Instance Methods

Most instance functionality is obtained and documented in the Array class, however, func-
tionality which is particular to this class is documented in this section.

[PointerValue]PointerValue::PointerArray

v = vPointerValue(ary, ...);

object ary;

unsigned ...

void *v;

This method is used to obtain the pointer value associated with a particular element
of an instance of the PointerArray class.

294 Dynace Manual

The arguments after the ary argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the ary argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

Example:

object ary;

void *v;

ary = vNew(PointerArray, 2, 5, 4);

v = vPointerValue(ary, 1, 2);

/* v has ary[1][2] */

See also: ChangeValue::PointerArray

[ChangeValue]ChangeValue::PointerArray

ary = vChangeValue(ary, val, ...);

object ary;

void *val;

unsigned ...

This method is used to change the value of one element of PointerArray ary.

val is the value which the element of the array should be changed to.

The arguments after the val argument (each an unsigned) are used to specify the
exact index into each consecutive dimension of the array. The number of arguments
after the val argument must be equal to the number of dimensions (or rank) of array
ary. See IndexOrigin::Array for more information.

The value returned is the modified array passed.

Example:

object ary;

int v = 5;

ary = vNew(PointerArray, 2, 5, 4);

vChangeValue(ary, &v, 1, 2);

/* ary[1][2] <- &v */

See also: PointerValue::PointerArray

Chapter 5: Class Library Reference 295

5.39 PropertyList Class

Property lists allow arbitrary string name / Dynace object pairs to be associated with any
Dynace object. The Dynace objects being associated are associated and retrieved via a
unique string name. Any number of these associations may be applied to an instance of a
class with this capability.

This class is used as a mixin class. A mixin class is one which is sub-classed with another
class (multiple inheritance) in order to give additional functionality to the first class. This
class gives any class which inherits from it the ability to set and retrieve arbitrary Dynace
objects which are accessed by string names (properties).

For example, if you had a class called MyClass and wanted to give it the ability
to have property lists you would create a new class called MyClassWithProperties

(for example) which would inherit from MyClass and PropertyList. The new class
(MyClassWithProperties) would contain all the functionality of MyClass plus it would be
able to handle property lists.

5.39.1 PropertyList Class Methods

There are no class methods implemented by this class.

5.39.2 PropertyList Instance Methods

[DisposePropertyList]DisposePropertyList::PropertyList

r = gDisposePropertyList(ins);

object ins; /* the instance */

object r; /* ins */

This method is used to remove all properties previously associated with an object.
The properties will either be deep disposed or simply disassociated depending on how
they were added (see PropertyPut). The instance passed is returned.

Example:

gDisposePropertyList(ins);

See also: PropertyRemove::PropertyList

[PropertyGet]PropertyGet::PropertyList

r = gPropertyGet(ins, pr);

object ins; /* the instance */

char *pr; /* the property name */

object r; /* value */

296 Dynace Manual

This method is used to retrieve a property previously associated with an object. The
property is returned otherwise, if no property with that name was added, then NULL

is returned.

Example:

object val;

val = gPropertyGet(ins, "Color");

See also: PropertyPut::PropertyList, PropertyRemove::PropertyList

[PropertyPut]PropertyPut::PropertyList

r = gPropertyPut(ins, pr, ad, val);

object ins; /* the instance */

char *pr; /* the property name */

int ad; /* auto dispose flag */

object val; /* value to be associated */

object r; /* val */

This method is used to associate an object (val) to instance ins under the property
name given by pr. If the given property has already been used it will be overwritten
by val.

ad is a flag used to determine what happens to val once ins is disposed or if the
property is overwritten. If ad is 1 the object will be deep disposed otherwise (if it’s
zero) it will be simply disassociated with the object and not disposed.

Example:

object ins = gNew(MyClass);

gPropertyPut(ins, "Color", 1, gNewWithStr(String, "Red"));

See also: PropertyGet::PropertyList, PropertyRemove::PropertyList

[PropertyRemove]PropertyRemove::PropertyList

r = gPropertyRemove(ins, pr);

object ins; /* the instance */

char *pr; /* the property name */

object r; /* ins */

This method is used to remove a property previously associated with an object. The
property will either be deep disposed or simply disassociated depending on how it
was added (see PropertyPut). The instance passed is returned.

Chapter 5: Class Library Reference 297

Example:

gPropertyRemove(ins, "Color");

See also: DisposePropertyList::PropertyList, PropertyRemove::PropertyList

298 Dynace Manual

5.40 Semaphore Class

This class provides a mechanism to coordinate the activity of multiple threads. It provides
counting, named and unnamed semaphores. See the manual for a detailed description of
semaphores.

See the examples included with the Dynace system for an illustration of the use of the
thread / pipe / semaphore related classes.

5.40.1 Semaphore Class Methods

The only two class methods associated with this class provide a means to create new
semaphore instances and to find existing semaphores by name.

[FindStr]FindStr::Semaphore

s = gFindStr(Semaphore, name)

char *name;

object s;

This method is used to obtain a semaphore object from its associated name. If found
it is returned, otherwise NULL is returned.

See also: New::Semaphore

[New]New::Semaphore

s = gNew(Semaphore)

object s;

This class method is used to create and initialize a new unnamed semaphore with an
initial and maximum count of 1.

The value returned (s) is the semaphore object created.

See also: NewSemaphore::Semaphore, FindStr::Semaphore,

Dispose::Semaphore

[NewSemaphore]NewSemaphore::Semaphore

s = gNewSemaphore(Semaphore, name, cnt, max)

char *name;

int cnt, max;

object s;

This class method is used to create and initialize a new semaphore.

Chapter 5: Class Library Reference 299

name is the name of the new semaphore and may be NULL if no name is to be associated
with the semaphore.

cnt is the initial count associated with the counting semaphore and is used to indicate
the maximum number of threads which may hold this semaphore at one time. A
typical value would be 1 and indicates that only a single thread may hold it at a time.

max is the maximum value the count of the semaphore is allowed to achieve. If set
higher (with Release) it will be reset to max. This is typically set to the same value
as cnt.

The value returned (s) is the semaphore object created. If not kept it may be obtained
later by the use of the FindStr::Semaphore method.

See also: NewSemaphore::Semaphore, FindStr::Semaphore,

Dispose::Semaphore

5.40.2 Semaphore Instance Methods

The instance methods associated with this class provide a means for locking, releasing,
disposing and getting information about semaphore instances.

[Count]Count::Semaphore

cnt = gCount(s)

object s;

int cnt;

This method is used to obtain the current lock count associated with semaphore s.

See also: New::Semaphore, Name::Semaphore

[DeepDispose]DeepDispose::Semaphore

r = gDeepDispose(s)

object s;

object r; /* NULL */

This method is used to dispose of a semaphore. All locks will be released and the
semaphore is disposed. This method is the same as Dispose::Semaphore.

See also: Release::Semaphore

300 Dynace Manual

[Dispose]Dispose::Semaphore

r = gDispose(s)

object s;

object r; /* NULL */

This method is used to dispose of a semaphore. All locks will be released and the
semaphore is disposed. This method is the same as DeepDispose::Semaphore.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Release::Semaphore

[Name]Name::Semaphore

nam = gName(s)

object s;

char *nam;

This method is used to obtain the name of semaphore s.

See also: New::Semaphore, Count::Semaphore

[Release]Release::Semaphore

s = gRelease(s, cnt)

object s;

int cnt;

This method is used to release a lock on a semaphore. The semaphore lock count will
be incremented by cnt, which is normally 1. As soon as a semaphore’s lock count
goes above 0 any threads which are waiting for the semaphore will be taken off hold
and receive the lock (limited to the number of locks available). This method returns
the semaphore instance passed.

See also: WaitFor::Semaphore

Chapter 5: Class Library Reference 301

[WaitFor]WaitFor::Semaphore

r = gWaitFor(s)

object s;

int r;

This method is used to obtain a lock on semaphore s. If the semaphore has already
exceeded its lock count the current thread will be placed on hold until the semaphore
is available. Each call to WaitFor uses up a single count associated with semaphore
s. This method always returns 0.

See also: Release::Semaphore

302 Dynace Manual

5.41 Sequence Class

The Sequence class is an abstract class which serves the sole purpose of grouping several
subclasses which have common functionality. There is no specific class or instance methods
directly associated with this class.

The subclasses of this class (LinkSequence, LinkObjectSequence and SetSequence)
are used to provide a convenient mechanism to enumerate (or sequence) through all the
elements of a collection.

Chapter 5: Class Library Reference 303

5.42 Set Class

The Set class is used to store a collection of objects which contain some means of unique
identification for quick access. The objects stored may be any Dynace object. gHash and
gCompare will be used on the object to be added in order to store and compare it amongst
other objects in the Set.

Since Dynace contains default methods for Hash and Compare, any group of Dynace
objects may be stored in any Set instance.

If values are to be associated with the keys one of the Dictionary classes would be pre-
ferred. The Set class, however, provides most of the functionality needed by the Dictionary
classes.

See the examples included with the Dynace system for an illustration of the use of the
Set/Dictionary related classes.

5.42.1 Set Class Methods

The only class method used in this class is one to create instances of itself.

[New]New::Set

i = gNew(Set);

object i;

This class method creates instances of the Set class. The set created is designed to
accommodate rather small sets of about 30 elements. If a Set becomes too full it
automatically re-sizes itself. See NewWithInt::Set for a method of creating a set
while specifying its initial size.

The new instance is returned.

See also: NewWithInt::Set, Resize::Set

[NewWithInt]NewWithInt::Set

i = gNewWithInt(Set, size);

int size;

object i;

This class method creates instances of the Set class. size is used to give the instance
some idea of the initial maximum number of objects to be stored in the Set. The
actual number of objects may exceed this number, however, some loss of efficiency
will occur.

Since a Set is implemented as a hash table it is best if size is actually larger than
the number of objects to be held. It should be an odd number or better yet a prime

304 Dynace Manual

number. Keep in mind, however, that there is storage requirements associated with
this number and the use of a very large number will consume large memory resources.
In reality most reasonable numbers will work fine.

Regardless of the size specified the set object will never overflow. It will just be less
efficient if many more elements then size are added.

The new instance is returned.

See also: New::Set, Resize::Set

5.42.2 Set Instance Methods

The instance methods associated with this class provide all the means to add, inquire,
remove and print instances of the Set class.

[Add]Add::Set

r = gAdd(i, luk);

object i;

object luk;

object r;

This method is used to add a new object (luk) to the Set instance (i). If an object
with the same key already exists in the Set it will be left as is and Add will return
NULL. If luk is added it will also be returned.

luk may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Set.

See also: Find::Set, FindAdd::Set, RemoveObj::Set

[Copy]Copy::Set

so = gCopy(i);

object i, so;

This method is used to create a new instance of the Set class with the same elements
as Set i. Or put more simply, it makes a copy. The new Set instance is returned.

Note that this method is designed to also work correctly for the Dictionary subclasses
of Set.

Chapter 5: Class Library Reference 305

Example:

object x, y;

x = gNewWithInt(Set, 101);

y = gCopy(x);

See also: NewWithInt::Set, DeepCopy::Set

[DeepCopy]DeepCopy::Set

so = gDeepCopy(i);

object i, so;

This method is used to create a new instance of the Set class which contains copies
of all the elements from the original Set. DeepCopy is used on each element to create
the copies. The new Set instance is returned.

Note that this method is designed to also work correctly for the Dictionary subclasses
of Set.

Example:

object x, y;

x = gNewWithInt(Set, 100);

y = gDeepCopy(x);

See also: NewWithInt::Set, Copy::Set

[DeepDispose]DeepDispose::Set

r = gDeepDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of an entire Set instance. It also disposes of all the
objects or associations in the Set by use of the DeepDispose method.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Dispose::Set, Dispose1::Set, DisposeAllNodes::Set

306 Dynace Manual

[DeepDisposeAllNodes]DeepDisposeAllNodes::Set

i = gDeepDisposeAllNodes(i);

object i;

This method is used to remove all objects in a Set instance without disposing of the
set itself. Each object or association is disposed of via DeepDispose.

The value returned is always the instance passed.

See also: DisposeAllNodes::Set, Dispose::Set, DisposeAllNodes1::Set

[DeepDisposeGroup]DeepDisposeGroup::Set

i = gDeepDisposeGroup(i, fun);

object i;

int (*fun)(object);

This method is used to remove and dispose of a group of objects from the Set i. The
function, fun, is executed for each object in the Set. With each call fun is passed
the object at that point in the Set. If fun returns a 1 that particular object will be
removed, or else if fun returns a 0 the object will not be removed. fun is used to
decide which objects will be removed.

The objects removed are disposed of by use of the DeepDispose method.

See also: GroupRemove::Set, DisposeGroup::Set, DisposeAllNodes::Set

[DeepDisposeObj]DeepDisposeObj::Set

r = gDeepDisposeObj(i, luk);

object i;

object luk;

object r;

This method is used to remove and dispose of an object (luk) from the Set instance
(i). If it is not found NULL is returned, otherwise i is returned. luk is disposed of by
use of the DeepDispose method.

luk may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Set.

See also: RemoveObj::Set, DisposeObj::Set

Chapter 5: Class Library Reference 307

[Dispose]Dispose::Set

r = gDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of an entire Set instance. It does not dispose of any
of the objects or associations in the Set.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: DeepDispose::Set, Dispose1::Set, DisposeAllNodes::Set

[Dispose1]Dispose1::Set

gDispose1(i);

object i;

This method is used to dispose of an entire Set instance. It also disposes of all of the
objects or associations in the Set by the use of the Dispose method applied to each
object. There is no value returned.

See also: DeepDispose::Set, Dispose::Set, DisposeAllNodes1::Set

[DisposeAllNodes]DisposeAllNodes::Set

i = gDisposeAllNodes(i);

object i;

This method is used to remove all objects in a Set instance without disposing of the
set itself. It does not dispose of any of the objects or associations in the Set, they
are simply disassociated with the Set.

The value returned is always the instance passed.

See also: DeepDisposeAllNodes::Set, DisposeAllNodes1::Set,

Dispose::Set

308 Dynace Manual

[DisposeAllNodes1]DisposeAllNodes1::Set

i = gDisposeAllNodes1(i);

object i;

This method is used to remove all objects in a Set instance without disposing of the
set itself. Each object or association in the set are disposed of via Dispose.

The value returned is always the instance passed.

See also: DisposeAllNodes::Set, DeepDisposeAllNodes::Set,

Dispose::Set

[DisposeGroup]DisposeGroup::Set

i = gDisposeGroup(i, fun);

object i;

int (*fun)(object);

This method is used to remove and dispose of a group of objects from the Set i. The
function, fun, is executed for each object in the Set. With each call fun is passed
the object at that point in the Set. If fun returns a 1 that particular object will be
removed, or else if fun returns a 0 the object will not be removed. fun is used to
decide which objects will be removed.

The objects removed are disposed of by use of the Dispose method.

See also: GroupRemove::Set, DeepDisposeGroup::Set

[DisposeObj]DisposeObj::Set

r = gDisposeObj(i, luk);

object i;

object luk;

object r;

This method is used to remove and dispose of an object (luk) from the Set instance
(i). If it is not found NULL is returned, otherwise i is returned. luk is disposed of by
use of the Dispose method.

luk may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Set.

See also: RemoveObj::Set, DeepDisposeObj::Set

Chapter 5: Class Library Reference 309

[Find]Find::Set

r = gFind(i, luk);

object i;

object luk;

object r;

This method is used to find an existing object (luk) in the Set instance (i). If the
object is found in the Set it will be returned otherwise Find will return NULL.

luk may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Set.

See also: Add::Set, FindAdd::Set, RemoveObj::Set

[FindAdd]FindAdd::Set

r = gFindAdd(i, luk);

object i;

object luk;

object r;

This method is used to find an existing object (luk) in the Set instance (i) and
return it. If the object is not found it will be added and returned.

luk may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Set.

See also: Add::Set, Find::Set, RemoveObj::Set

[First]First::Set

r = gFirst(i);

object i;

object r;

This method returns one of the objects in the set. The returned object will be an
arbitrary one in the set. This method is useful in cases where you want to enumerate
through each object in the set where you will perform some operation on the returned
object and then remove or dispose it from the set. In that case the next call to gFirst
will simply return a different object from the set.

If no objects are left in the set, gFirst returns NULL.

310 Dynace Manual

See also: RemoveObj::Set, Sequence::Set

[ForAll]ForAll::Set

r = gForAll(i, fun);

object i;

object (*fun)(object);

object r;

This method is used to execute function fun on each object in a Set.

Each time fun is called it is passed the next object in the Set as its first and only
argument. If fun returns a non-NULL object, ForAll returns immediately with the
value returned by fun. As long as fun returns NULL it will be passed successive
objects in the Set until there are no more objects. At that time ForAll will just
return NULL indicating that all objects have been enumerated.

See also: Sequence::Set

[GroupRemove]GroupRemove::Set

i = gGroupRemove(i, fun);

object i;

int (*fun)(object);

This method is used to remove a group of objects from the Set i. The function, fun,
is executed for each object in the Set. With each call fun is passed the object at that
point in the Set. If fun returns a 1 that particular object will be removed, or else if
fun returns a 0 the object will not be removed. fun is used to decide which objects
will be removed.

The objects removed are not disposed.

See also: DisposeGroup::Set, DeepDisposeGroup::Set

[RemoveObj]RemoveObj::Set

r = gRemoveObj(i, luk);

object i;

object luk;

object r;

This method is used to remove an object (luk) from the Set instance (i) and return
it. If the object is not found NULL will be returned. luk is not disposed.

Chapter 5: Class Library Reference 311

luk may be any Dynace object. The gHash and gCompare generics are used to find
and compare the various objects in the Set.

See also: DisposeObj::Set, DeepDisposeObj::Set

[Resize]Resize::Set

r = gResize(i, size);

object i;

int size;

object r;

This method is used to change the size of the hash table used to implement the Set.
It may be used if during runtime it is discovered that the number of objects stored
or to be stored in the Set are very different than the number used when the Set was
created.

Since a Set is implemented as a hash table it is best if size is actually larger than
the number of objects to be held. It should be an odd number or better yet a prime
number. Keep in mind, however, that there is storage requirements associated with
this number and the use of a very large number will consume large memory resources.
The Set will support more objects than defined by size at a lesser efficiency. In reality
most reasonable numbers will work fine.

r is the re-sized Set.

This method is very time consuming and should only be used when absolutely neces-
sary.

See also: NewWithInt::Set

[Sequence]Sequence::Set

s = gSequence(i);

object i;

object s;

This method takes an instance of the Set class (i) and returns an instance of the
SetSequence class (s). The Set represented by i is not effected by this operation.
The Set sequence item, s, is used to enumerate through all the objects in Set i. See
the SetSequence class for documentation of other methods needed to use s.

312 Dynace Manual

Example:

object set; /* Set */

object s; /* Set sequence */

object obj; /* an object */

/* set must be initialized previously */

for (s=gSequence(set) ; obj = gNext(s) ;) {

/* do something with obj */

}

See also: Next::SetSequence, First::Set

[Size]Size::Set

sz = gSize(i);

object i;

int sz;

This method is used to obtain the number of objects in the Set.

[StringRep]StringRep::Set

s = gStringRep(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
object i and its value. This is often used to print or display a representation of an
object. It is also used by by Print::Object (a method useful during the debugging
phase of a project) in order to directly print an object to a stream.

This method obtains the values of each object by calling StringRepValue on each
element.

See also: Print::Object, PrintValue::Object

Chapter 5: Class Library Reference 313

5.43 SetSequence Class

This class is a subclass of Sequence and is used to provide a mechanism to enumerate
through all the objects in a Set (or one of its subclasses) without effecting the structure.

Typically, the Sequence instance method of the Set class is used to create the instances
of the SetSequence class.

5.43.1 SetSequence Class Methods

There is only one class method associated with this class. It is used to create new instances
of itself and is only called by the Sequence method associated with the Set class.

5.43.2 SetSequence Instance Methods

This class only has a single instance method which is used to enumerate through objects in
the Set.

[Next]Next::SetSequence

obj = gNext(i);

object i;

object obj;

This method is used to enumerate through all the objects in a Set. Each time Next

is called the following object in the Set is returned. It does this in a non-destructive
way so the associated Set is not effected.

When Next is called after the last object has been returned (or if there are no objects
in the Set) it will return NULL and automatically dispose of the sequence object i.
Therefore, the only time Dispose would be needed (if the garbage collector weren’t
being used) would be if the entire list was not enumerated.

Note that if this method is used with one of the Dictionary classes each call to Next

returns the appropriate Association type. The gValue and gKey generics may be
used to obtain the desired values from the Association returned.

Example:

object set; /* Set */

object s; /* Set sequence */

object obj; /* one object or association */

/* set must be initialized previously */

for (s=gSequence(set) ; obj = gNext(s) ;) {

/* do something with object obj */

}

See also: Sequence::Set

314 Dynace Manual

5.44 ShortArray Class

This class, which is a subclass of NumberArray, is used to represent arbitrary shaped arrays
of the C language short data type in an efficient manner. Although this class implements
much of its own functionality most of it is documented within the NumberArray and Array

classes because the interface is shared by all subclasses of the NumberArray class.

5.44.1 ShortArray Class Methods

There is only one class method which is particular to this class.

[Iota]Iota::ShortArray

ary = gIota(ShortArray, n);

object ary;

int n;

This method is used to create a ShortArray which has 1 dimension of length n.
The first element is initialized with the value set by IndexOrigin::Array and each
successive element is given a value one greater than the previous element.

The value returned is the new array.

Example:

object ary;

ary = gIota(ShortArray, 5);

/* ary = (0, 1, 2, 3, 4) */

See also: IndexOrigin::Array

Chapter 5: Class Library Reference 315

5.45 ShortInteger Class

The ShortInteger class is used to represent the C language short data type as a Dynace
object. It is a subclass of the Number class. Even though the ShortInteger class implements
most of its own functionality, it is documented as part of the Number class because most of
the interface is the same for all subclasses of the Number class. Differences are documented
in this section.

5.45.1 ShortInteger Class Methods

The ShortInteger class has only one class method and it is used to create new instances
of itself.

[NewWithInt]NewWithInt::ShortInteger

i = gNewWithInt(ShortInteger, s);

int s;

object i;

This class method creates instances of the ShortInteger class. s is the initial value of
the integer being represented. Note that s is of type int. That is because if you pass
a short type to a generic function (which uses a variable argument declaration) the
C language will automatically promote it to an int.

The value returned is a Dynace instance object which represents the integer passed.

Note that the default disposal methods are used by this class since there are no special
storage allocation requirements.

Example:

object x;

x = gNewWithInt(ShortInteger, 55);

See also: ShortValue::Number, Dispose::Object

5.45.2 ShortInteger Instance Methods

The instance methods associated with the ShortInteger class provide a means of changing
and obtaining the value associated with an instance of the ShortInteger class. All of the
ShortInteger class instance methods are documented in the Number class because of their
common interface with all other subclasses of the Number class.

316 Dynace Manual

5.46 Socket Class

The Socket class is a subclass of Stream and provides facilities which make utilizing sockets
easy and portable. Sockets provide a mechanism for network communication over TCP or
the Internet.

At present only the client-side methods are implemented.

5.46.1 Socket Class Methods

The only class method is used to open a new socket which equates to forming a connection
with a server.

[SocketConnect]SocketConnect::Socket

skt = gSocketConnect(Socket, addr, port);

char *addr;

int port;

object skt;

This method is used to form a connection between a client and server. The application
calling this method would be the client side. In order to form a connection the
IP address (“123.456.789.012”) or domain name (“prep.ai.mit.edu”) as well as the
port number of the server application must be known. addr is a character string
representing the IP address or domain name, and port is the port number for the
server application. This information would always be known by the organization
responsible for the server end.

gSocketConnect returns an object which represents the connection or NULL if the
connection was not made.

Example:

object skt = gSocketConnect(Socket, "192.44.32.44", 4099);

See also: Dispose::Socket

5.46.2 Socket Instance Methods

Instance methods associated with the Socket class enable data to be sent to and from a
client / server pair of applications.

[Dispose]Dispose::Socket

r = gDispose(skt);

object skt;

object r; /* NULL */

Chapter 5: Class Library Reference 317

This method is used to close a socket connection and dispose of its associated object.
There is also a gDeepDispose which performs the same function.

[GetErrorCode]GetErrorCode::Socket

r = gGetErrorCode(skt);

object skt;

int r;

This method is used to obtain an error code which describes the last error on more
detail.

[Read]Read::Socket

r = gRead(skt, buf, n);

object skt;

char *buf;

unsigned n;

int r;

This method is used to read n bytes into buf from Socket skt. The value returned
is the actual number of bytes read or -1 on error. An error can occur for two reasons:
a severed connection, or a time out error. In the case of a severed connection one
would not want to continue use of that socket since it is probably not valid anymore.

gRead normally waits up to 60 seconds for reception of the requested bytes. If part
of the data is received gRead will again wait up to 60 seconds for the remaining data.
gRead continues to wait for all the data unless a connection error occurs or no data
is received for at least 60 seconds.

Example:

char buf[80];

if (10 != gRead(skt, buf, 10))

error code;

See also: gTimedRead::Socket

318 Dynace Manual

[RecvFile]RecvFile::Socket

r = gRecvFile(skt, tf);

object skt;

char *tf;

int r;

This method is used to receive a whole file over a socket connection. ff is the name
(and path) of the local file to where the received file is to be saved.

This method returns 0 on success or non-zero upon failure. This method makes some
degree of effort (via acknowledgments and check sums) to assure that the file was in
fact correctly received.

This method is unique to Dynace which means that the server end would have to
have the correct receive function in order for this facility to be used.

Example:

if (gRecvFile(skt, "myFile"))

handle error;

See also: SendFile::Socket

[SendFile]SendFile::Socket

r = gSendFile(skt, ff, tf);

object skt;

char *ff;

char *tf;

int r;

This method is used to transmit a whole file over a socket connection. ff is the name
(and path) of the local file to be transmitted. tf is the name of the file that the
receiving end will see (i.e. the name of the file the receiving end will think you are
sending). If tf is NULL then ff is used.

This method returns 0 on success or non-zero upon failure. This method makes some
degree of effort (via acknowledgments and check sums) to assure that the file was in
fact correctly received by the other end.

This method is unique to Dynace which means that the server end would have to
have the correct receive function in order for this facility to be used.

Chapter 5: Class Library Reference 319

Example:

if (gSendFile(skt, "../myFile", NULL))

handle error;

See also: RecvFile::Socket

[TimedRead]TimedRead::Socket

r = gTimedRead(skt, buf, n, w);

object skt;

char *buf;

unsigned n;

int w;

int r;

This method is used to read n bytes into buf from Socket skt. The value returned
is the actual number of bytes read or -1 on error. An error can occur for two reasons:
a severed connection, or a time out error. In the case of a severed connection one
would not want to continue use of that socket since it is probably not valid anymore.

gTimedRead normally waits up to w seconds for reception of the requested bytes.
If part of the data is received gTimedRead will again wait up to w seconds for the
remaining data. gTimedRead continues to wait for all the data unless a connection
error occurs or no data is received for at least w seconds.

Example:

char buf[80];

if (10 != gTimedRead(skt, buf, 10, 60))

error code;

See also: gRead::Socket

[TimedWrite]TimedWrite::Socket

r = gTimedWrite(skt, buf, n, w);

object skt;

char *buf;

unsigned n;

int w;

int r;

320 Dynace Manual

This method is used to send n bytes from buf to Socket skt. The value returned is
the actual number of bytes sent or -1 on error. An error can occur for two reasons:
a severed connection, or a time out error. In the case of a severed connection one
would not want to continue use of that socket since it is probably not valid anymore.

gTimedWrite normally waits up to w seconds for the ability to send the requested
bytes. If part of the data is sent gTimedWrite will again wait up to w seconds for
the remaining data. gTimedWrite continues to wait until all the data is sent unless
a connection error occurs or no data is able to send for at least w seconds.

Successfully sending data does not guarantee that the data was received on the other
end. You must send back some kind of acknowledgement to assure that.

Example:

if (12 != gTimedWrite(skt, "Hello, World", 12, 60))

error code;

See also: gWrite::Socket

[Write]Write::Socket

r = gWrite(skt, buf, n);

object skt;

char *buf;

unsigned n;

int r;

This method is used to send n bytes from buf to Socket skt. The value returned is
the actual number of bytes sent or -1 on error. An error can occur for two reasons:
a severed connection, or a time out error. In the case of a severed connection one
would not want to continue use of that socket since it is probably not valid anymore.

gWrite normally waits up to 60 seconds for the ability to send the requested bytes.
If part of the data is sent gWrite will again wait up to 60 seconds for the remaining
data. gWrite continues to wait until all the data is sent unless a connection error
occurs or no data is able to send for at least 60 seconds.

Successfully sending data does not guarantee that the data was received on the other
end. You must send back some kind of acknowledgement to assure that.

Example:

if (12 != gWrite(skt, "Hello, World", 12))

error code;

See also: gTimedWrite::Socket

Chapter 5: Class Library Reference 321

5.47 Stream Class

The Stream class is an abstract class used to group other classes which poses the ability
to read and write characters sequentially. Although much of the actual functionality is
implemented by its subclasses, the methods are documented here because of their common
interface.

5.47.1 Stream Class Methods

There are no class methods associated with this class.

5.47.2 Stream Instance Methods

Although most of the following methods are actually implemented in the subclasses of
Stream, they are documented here because of their common interface. Note that some
methods are not available for all subclasses of the Stream class. This would occur if the
method is inappropriate for a particular Stream subclass (such as seeking backward on a
String).

[Advance]Advance::Stream

r = gAdvance(i, n);

object i;

long n;

long r;

This method is used to advance the position of the next read of Stream i forward by
n bytes. The value returned is the actual number of bytes advanced or 0 on error.

See also: Seek::Stream, Retreat::Stream

[EndOfStream]EndOfStream::Stream

r = gEndOfStream(i);

object i;

int r;

This method returns 1 if Stream i is at the end of available characters and 0 otherwise.
by i.

See also: Length::Stream, Position::Stream

322 Dynace Manual

[Gets]Gets::Stream

r = gGets(i, buf, sz);

object i;

char *buf;

int sz;

char *r;

This method is used to read a new-line terminated string from Stream i into buf. It
will read no more than sz-1 bytes, but room permitting, the new-line will be included.
r will be the same as buf unless there is an error, in which case r will be NULL.

Example:

char buf[80];

gGets(stdinStream, buf, sizeof buf);

See also: Read::Stream, Puts::Stream

[Length]Length::Stream

r = gLength(i);

object i;

long r;

This method is used obtain the total length of the Stream represented by i.

See also: Seek::Stream, Position::Stream

[Position]Position::Stream

r = gPosition(i);

object i;

long r;

This method is used obtain the current position in the stream relative to its beginning.

See also: Seek::Stream, Length::Stream

Chapter 5: Class Library Reference 323

[Printf]Printf::Stream

r = vPrintf(i, fmt, ...);

object i;

char *fmt;

int r;

This method is used to write a formatted string to stream i. fmt specifies the format
of the output as well as the types and number of remaining arguments. Since this
method is implemented by the use of the vsprintf function supplied by the host
system you may find more detailed description of the arguments to this method in
the manual supplied by your host compiler (under fprintf). The only difference
would be the first argument which would now be a Stream instance.

The value returned is the number of bytes actually written to the stream.

Example:

vPrintf(stdoutStream, "I am %d years old.\n", 10);

See also: Puts::Stream

[Putc]Putc::Stream

r = gPutc(i, ch);

object i;

char ch;

int r;

This method is used to write a character (ch) to stream i. The value returned is the
character written or EOF if error.

Example:

gPutc(stdoutStream, ’x’);

See also: Puts::Stream

[Puts]Puts::Stream

r = gPuts(i, str);

object i;

char *str; /* or: object str; */

int r;

324 Dynace Manual

This method is used to write a string (str) to stream i. strmay also be an instance of
the String class in which case the associated string will be written. All the characters
up to the first null byte will be written. The value returned is the number of bytes
written to the stream.

Example:

gPuts(stdoutStream, "Hello\n");

See also: Putc::Stream, Printf::Stream

[Read]Read::Stream

r = gRead(i, buf, n);

object i;

char *buf;

unsigned n;

int r;

This method is used to read n bytes into buf from Stream i. The value returned is
the actual number of bytes read or -1 on error.

Example:

char buf[80];

gRead(stdinStream, buf, 10);

See also: Gets::Stream

[Retreat]Retreat::Stream

r = gRetreat(i, n);

object i;

long n;

long r;

This method is used to retreat the position of the next read of Stream i by n bytes.
The value returned is the actual number of bytes retreated or 0 on error.

See also: Seek::Stream, Advance::Stream

Chapter 5: Class Library Reference 325

[Seek]Seek::Stream

r = gSeek(i, n);

object i;

long n;

long r;

This method is used to seek to position n of Stream i relative to the beginning of the
stream. The value returned is the actual position seeked to or 0 on error.

See also: Retreat::Stream, Advance::Stream

[Write]Write::Stream

r = gWrite(i, buf, n);

object i;

char *buf;

unsigned n;

int r;

This method is used to write n bytes from buf into Stream i. The value returned is
the actual number of bytes written or -1 on error.

Example:

gWrite(stdoutStream, "Hello", 5);

See also: Puts::Stream, Read::Stream

5.47.3 Stream Global Variables

There are several global variables associated with the Stream class. These variables rep-
resent standard streams used throughout Dynace. They are used for diagnostic output as
well as any other input or output which may be necessary on a global basis. These variables
may be assigned different streams in order to redirect the output. The remainder of this
section documents all the global stream variables.

[stderrStream]stderrStream::Stream

object stderrStream;

The stderrStream global variable is used to direct error messages to the correct
output medium. It is initialized to an instance of the File class using the C language
stderr stream. It may be set to any instance of a subclass of Stream.

326 Dynace Manual

See also: stdoutStream::Stream

[stdinStream]stdinStream::Stream

object stdinStream;

The stdinStream global variable is used as a global mechanism for obtaining input.
It is initialized to an instance of the File class using the C language stdin stream.
It may be set to any instance of a subclass of Stream.

See also: stdoutStream::Stream

[stdoutStream]stdoutStream::Stream

object stdoutStream;

The stdoutStream global variable is used to direct normal output to the correct
output medium. It is initialized to an instance of the File class using the C language
stdout stream. It may be set to any instance of a subclass of Stream.

See also: stderrStream::Stream

[traceStream]traceStream::Stream

object traceStream;

The traceStream global variable is used to direct Dynace trace output to the correct
output medium. It is initialized to an instance of the File class using the C language
stdout stream. It may be set to any instance of a subclass of Stream.

See also: stderrStream::Stream

Chapter 5: Class Library Reference 327

5.48 String Class

The String class is used to represent the C language char * data type as a Dynace object.
It is a subclass of the Stream class and it provides an array of methods to operate on the
string objects. Unlike C strings this class will dynamically expand a string buffer as needed
so you should never have to worry about the buffer size. You can also use the MA_compact
function to compact the string memory and reduce memory fragmentation.

Most of the String methods which take string arguments (except the first argument)
will accept a C language string (char *) or an instance of the String class arbitrarily. The
system can tell the difference between them at runtime. If it is a valid Dynace object the
system will assure that it is a kind of String, otherwise it is assumed to be a C string.

Instances of this class will also operate like other subclasses of Stream. That is you can
write (append), read (copy and remove), advance (remove leading characters) and obtain
its length. This comes in handy when you wish to keep a small (and fast) sequential file in
memory.

5.48.1 String Class Methods

The String class has several class methods which create new String instances. They are
provided to lend various levels of flexibility.

[Build]Build::String

i = vBuild(String, ...);

object i;

This class method creates a new instance of the String class. The initial value of the
new instance will be the concatenation of all the String or char * arguments up to
an END.

Each argument may be a C language char * or an instance of the String class.
Dynace can tell the difference between them at runtime. If it is a valid Dynace object
the system will assure that it is a kind of String, otherwise it is assumed to be a C
string.

Note that the variable argument list MUST end with an END. There is no other way
in C to tell when the last argument has been reached. If you forget the END the system
will probably hang! (If you have a problem with the system hanging you might want
to check all the vBuild generic calls.)

The value returned is the new String instance.

328 Dynace Manual

Example:

object x, y;

x = gNewWithStr(String, " World");

y = vBuild(String, "Hello", x, "!", END);

/* y = "Hello World!" */

See also: StringValue::String, Dispose::String, There is also an instance
method Build::String

[MaskFunction]MaskFunction::String

fun = gMaskFunction(String, ch);

char ch;

int (*fun)();

This method is used to return the masking function associated with the mask char-
acter ch.

Currently there are only two masking characters used in the system, ‘#’ (numbers)
and ‘@’ (letters). The ‘#’ character’s associated function is isdigit while the ‘@’

character’s associated function is isalpha.

The masking function associated with a masking character takes a character as its only
parameter and returns non-zero if the character is the masking character associated
with the function and returns zero if it is not.

Example:

int (*fun)();

char *str = "A1";

int r;

fun = gMaskFunction(String, ’#’); /* Uses isdigit */

r = fun(str[0]); /* r == 0 */

r = fun(str[1]); /* r == 1 */

See also: gSetMaskFiller::String, gApplyMask::String,

gRemoveMask::String

[New]New::String

i = gNew(String);

object i;

Chapter 5: Class Library Reference 329

This class method creates instances of the String class. The returned String object is
initialized to "".

The value returned is a Dynace instance object which represents a null string.

Example:

object x;

x = gNew(String);

See also: Copy::String, StringValue::String, Dispose::String,

NewWithStr::String, NewWithObj::String

[NewWithStr]NewWithStr::String

i = gNewWithStr(String, val);

char *val; /* or object */

object i;

This class method creates instances of the String class. val is the initial value of the
string being represented.

val may be a C language char * or an instance of the String class. Dynace can tell
the difference between them at runtime. If it is a valid Dynace object the system will
assure that it is a kind of String, otherwise it is assumed to be a C string.

The value returned is a Dynace instance object which represents the string passed.

Example:

object x, y;

x = gNewWithStr(String, "Hello World!");

y = gNewWithStr(String, (char *) x);

See also: Copy::String, StringValue::String, Dispose::String

New::String, NewWithObj::String

[NewWithObj]NewWithObj::String

i = gNewWithObj(String, val);

object val; /* or char * */

object i;

330 Dynace Manual

This class method creates instances of the String class. val is the initial value of the
string being represented.

val may be a C language char * or an instance of the String class. Dynace can tell
the difference between them at runtime. If it is a valid Dynace object the system will
assure that it is a kind of String, otherwise it is assumed to be a C string.

The value returned is a Dynace instance object which represents the string passed.

Example:

object x, y;

x = gNewWithObj(String, (object) "Hello World!");

y = gNewWithObj(String, x);

See also: Copy::String, StringValue::String, Dispose::String

NewWithStr::String, New::String

[Sprintf]Sprintf::String

i = vSprintf(String, fmt, ...);

char *fmt;

object i;

This class method creates a new instances of the String class. Except for the first
argument and return value, this method takes the same arguments and performs
the same function as the normal sprintf contained in your C library. See that
documentation.

Note that except for the first argument, this method does not take Dynace objects.

The value returned is a Dynace instance object which represents the result of the
operation.

Example:

object x;

x = vSprintf(String, "%s is %d years old", "John", 66);

See also: StringValue::String, Dispose::String

5.48.2 String Instance Methods

The instance methods associated with the String class provide a means of changing and
obtaining the value associated with an instance of the String class. Methods are also
included to help the generic container classes to quickly access members of this class.

Chapter 5: Class Library Reference 331

[Append]Append::String

i = gAppend(i, str);

object i;

char *str; /* or object */

This method is used to append the string represented by str to the end of the string
represented by i.

str may be a C language char * or an instance of the String class. Dynace can tell
the difference between them at runtime. If it is a valid Dynace object the system will
assure that it is a kind of String, otherwise it is assumed to be a C string.

The value returned is the String instance passed (i).

Example:

object x;

x = gNewWithStr(String, "Hello");

gAppend(x, " World!");

/* x = "Hello World!" */

See also: ChangeValue::String, Build::String

[ApplyMask]ApplyMask::String

i = gApplyMask(i, mask, text);

object i;

char *mask;

char *text;

This method is used to apply mask to text and set the resulting value to i. If NULL or
an empty string ("") is passed in to mask then i has its string value changed to text.
If NULL or an empty string ("") is passed in to text then mask is applied directly to
the current string value in i.

Mask definitions contain any combination of mask characters and literal characters.
The first character of a mask can optionally be either ‘>’ or ‘<’ indicating the direction
which the mask is applied to the string. If the first character is ‘<’ then the mask is
applied from right to left. If the first character is ‘>’ or is neither of the directional
characters, then the mask is applied from left to right. The mask character ‘#’ indi-
cates that the character in this position must be a number while the mask character
‘@’ indicates that the character in this position must be a letter. Any other character
in the mask is a literal character and is left in the resulting string in its position
unchanged.

332 Dynace Manual

The value returned is the String instance passed (i).

Example:

object x;

char mask = "<(###) ###-####";

x = gNewWithStr(String, "1234567890");

gApplyMask(x, mask, NULL); /* x = "(123) 456-7890" */

gApplyMask(x, mask, "9876543210"); /* x = "(987) 654-3210" */

gApplyMask(x, NULL, "1234567890"); /* x = "1234567890" */

See also: gMaskFunction::String, gSetMaskFiller::String,

gRemoveMask::String

[Build]Build::String

i = vBuild(str, first, ...);

object str;

char *first; /* or object */

object i;

This method is used to modify the string associated with instance str by optionally
overwriting and optionally appending a group of C strings or String objects.

first may be an instance of the String class, a C string char * or a NULL. If first
is NULL the initial value of str will remain intact, otherwise, it will be replaced with
the string represented by first.

After the first argument has been processed the remaining String or char * argu-
ments, up to an END, will be concatenated to the end of str.

Each argument may be a C language char * or an instance of the String class.
Dynace can tell the difference between them at runtime. If it is a valid Dynace object
the system will assure that it is a kind of String, otherwise it is assumed to be a C
string.

Note that the variable argument list MUST end with an END. There is no other way
in C to tell when the last argument has been reached. If you forget the END the system
will probably hang! (If you have a problem with the system hanging you might want
to check all the vBuild generic calls.)

The value returned is the String instance passed (str).

Chapter 5: Class Library Reference 333

Example:

object x;

x = gNewWithStr(String, "Hello");

vBuild(x, NULL, " World", gNewWithStr(String, "!"), END);

/* x = "Hello World!" */

vBuild(x, "Goodbye", " World", "!", END);

/* x = "Goodbye World!" */

See also: ChangeValue::String, Append::String, There is also a class method
Build::String

[ChangeCharAt]ChangeCharAt::String

i = gChangeCharAt(i, n, c);

object i;

int n;

int c;

This method is used to change the character at position n within String instance i

to character c. The index origin is zero.

If n is equal to the number of characters in instance i (that is one greater than
the number of indexable characters), string i will be extended by one character (c).
However, if any larger index is used Dynace will issue an error message and abort the
program.

Example:

object x;

x = gNewWithStr(String, "Hello");

gChangeCharAt(x, 1, ’E’);

/* x = "HEllo" */

See also: CharValueAt::String

[ChangeStrValue]ChangeStrValue::String

i = gChangeStrValue(i, val);

object i;

char *val;

334 Dynace Manual

This method is used to change the value associated with an instance of the String
class. The new value may be of any length.

The value returned is the instance i.

Example:

object x, y;

x = gNewWithStr(String, "Hello World");

gChangeStrValue(x, "Are you all using Dynace?");

See also: ChangeValue::String, Append::String, Build::String

[ChangeValue]ChangeValue::String

i = gChangeValue(i, val);

object i;

object val; /* or char * */

This method is used to change the value associated with an instance of the String
class. The new value may be of any length.

val may be a C language char * or an instance of the String class. Dynace can tell
the difference between them at runtime. If it is a valid Dynace object the system will
assure that it is a kind of String, otherwise it is assumed to be a C string.

The value returned is the instance i.

Example:

object x, y;

x = gNewWithStr(String, "Hello World");

y = gNewWithStr(String, "Are you all using Dynace?");

gChangeValue(x, y);

See also: ChangeStrValue::String, Append::String, Build::String

[CharValueAt]CharValueAt::String

c = gCharValueAt(i, n);

object i;

int n;

char c;

Chapter 5: Class Library Reference 335

This method is used to obtain character n from String instance i. The index origin
is zero. If an index greater than the available characters is used Dynace will issue an
error message and abort the program.

Example:

object x;

char c;

x = gNewWithStr(String, "Hello");

c = gCharValueAt(x, 1);

/* c = ’e’ */

See also: ChangeCharAt::String

[Compare]Compare::String

r = gCompare(i, obj);

object i;

object obj; /* or char * */

int r;

This method is used to determine the equality of the values represented by i and obj.

obj may be a C language char * or an instance of the String class. Dynace can tell
the difference between them at runtime. If it is a valid Dynace object the system will
assure that it is a kind of String, otherwise it is assumed to be a C string.

r is -1 if the value represented by i is less than the value represented by obj, 1 if the
value of i is greater than obj, and 0 if they are equal.

This method is also used by the generic container classes to determine object rela-
tionships.

See also: Equal::String, CompareI::String, CompareN::String

[CompareI]CompareI::String

r = gCompareI(i, obj);

object i;

object obj; /* or char * */

int r;

This method is used to determine the equality of the values represented by i and
obj without regard for the case of the letters. Therefore, strings such as “abc” and
“ABC” will be considered equal.

336 Dynace Manual

obj may be a C language char * or an instance of the String class. Dynace can tell
the difference between them at runtime. If it is a valid Dynace object the system will
assure that it is a kind of String, otherwise it is assumed to be a C string.

r is -1 if the value represented by i is less than the value represented by obj, 1 if the
value of i is greater than obj, and 0 if they are equal.

See also: Compare::String, CompareN::String

[CompareN]CompareN::String

r = gCompareN(i, obj, n);

object i;

object obj; /* or char * */

int n; /* max number of characters to compare */

int r;

This method is used to determine the equality of the values represented by i and
obj. No more than n characters will be compared. If the two strings only differ past
n characters they will be considered equal.

obj may be a C language char * or an instance of the String class. Dynace can tell
the difference between them at runtime. If it is a valid Dynace object the system will
assure that it is a kind of String, otherwise it is assumed to be a C string.

r is -1 if the value represented by i is less than the value represented by obj, 1 if the
value of i is greater than obj, and 0 if they are equal.

See also: Compare::String, CompareNI::String

[CompareNI]CompareNI::String

r = gCompareNI(i, obj, n);

object i;

object obj; /* or char * */

int n; /* max number of characters to compare */

int r;

This method is used to determine the equality of the values represented by i and
obj without regard for the case of the letters. Therefore, strings such as “abc” and
“ABC” will be considered equal. No more than n characters will be compared. If the
two strings only differ past n characters they will be considered equal.

obj may be a C language char * or an instance of the String class. Dynace can tell
the difference between them at runtime. If it is a valid Dynace object the system will
assure that it is a kind of String, otherwise it is assumed to be a C string.

Chapter 5: Class Library Reference 337

r is -1 if the value represented by i is less than the value represented by obj, 1 if the
value of i is greater than obj, and 0 if they are equal.

See also: CompareI::String, CompareN::String

[Copy]Copy::String

so = gCopy(i);

object i, so;

This method is used to create a new instance of the String class with the same string
value as string i. Or put more simply, it makes a copy. The new String instance is
returned.

This method performs the same function as DeepCopy::String.

Example:

object x, y;

x = gNewWithStr(String, "Hello");

y = gCopy(x);

/* x = "Hello" */

See also: New::String, DeepCopy::String

[DeepCopy]DeepCopy::String

so = gDeepCopy(i);

object i, so;

This method is used to create a new instance of the String class with the same string
value as string i. Or put more simply, it makes a copy. The new String instance is
returned.

This method performs the same function as Copy::String.

Example:

object x, y;

x = gNewWithStr(String, "Hello");

y = gDeepCopy(x);

/* x = "Hello" */

338 Dynace Manual

See also: New::String, Copy::String

[DeepDispose]DeepDispose::String

r = gDeepDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of an instance of the String class. It performs the
same operation as Dispose.

Example:

object x;

x = gNewWithStr(String, "Hello World");

gDeepDispose(x);

[Dispose]Dispose::String

r = gDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of an instance of the String class. It performs the
same operation as DeepDispose.

Example:

object x;

x = gNewWithStr(String, "Hello World");

gDispose(x);

[Drop]Drop::String

i = gDrop(i, num);

object i;

int num;

This method is used to drop num characters from string i. If num is positive characters
will be dropped from the beginning of the string, otherwise, characters will be dropped
from the end of the string. An attempt to drop more characters than exist will lead
to a zero length string.

The modified String instance passed is returned.

Chapter 5: Class Library Reference 339

Example:

object x, y;

x = gNewWithStr(String, "Hello World");

gDrop(x, 4); /* x = "o World" */

x = gNewWithStr(String, "Hello World");

gDrop(x, -4); /* x = "Hello W" */

x = gNewWithStr(String, "ABC");

gDrop(x, 5); /* x = "" */

See also: Take::String, SubString::String

[Equal]Equal::String

r = gEqual(i, obj);

object i;

object obj; /* or char * */

int r;

This method is used to determine the equality of the values represented by i and obj.
If they contain the same string values a 1 is returned and 0 otherwise.

obj may be a C language char * or an instance of the String class. Dynace can tell
the difference between them at runtime. If it is a valid Dynace object the system will
assure that it is a kind of String, otherwise it is assumed to be a C string.

Example:

object x;

int r;

x = gNewWithStr(String, "Hello");

r = gEqual(x, "Hello"); /* r = 1 */

r = gEqual(x, gNewWithStr(String, "Hello")); /* r = 1 */

r = gEqual(x, "World"); /* r = 0 */

See also: Compare::String

[Hash]Hash::String

val = gHash(i);

object i;

int val;

340 Dynace Manual

This method is used by the generic container classes to obtain hash values for the
object. val is a hash value between 0 and a large integer value.

See also: Compare::String

[JustifyCenter]JustifyCenter::String

i = gJustifyCenter(i);

object i;

This method is used to center justify the text within a string. The length of the string
is not modified, only the position of the characters within the string. It is often used
in conjunction with Take::String in order to format text.

The modified String instance passed is returned.

Example:

object x;

x = gNewWithStr(String, "ABD DEF DD ");

gJustifyCenter(x); /* x = " ABD DEF DD " */

x = gNewWithStr(String, "ABD DEF");

gJustifyCenter(gTake(x, 14)); /* x = " ABD DEF " */

See also: Take::String, JustifyRight::String,

JustifyLeft::String

[JustifyLeft]JustifyLeft::String

i = gJustifyLeft(i);

object i;

This method is used to left justify the text within a string. The length of the string
is not modified, only the position of the characters within the string. It is often used
in conjunction with Take::String in order to format text.

The modified String instance passed is returned.

Chapter 5: Class Library Reference 341

Example:

object x;

x = gNewWithStr(String, " ABD DEF DD");

gJustifyLeft(x); /* x = "ABD DEF DD " */

x = gNewWithStr(String, "ABD DEF");

gJustifyLeft(gTake(x, 10)); /* x = "ABD DEF " */

See also: Take::String, JustifyCenter::String,

JustifyRight::String

[JustifyRight]JustifyRight::String

i = gJustifyRight(i);

object i;

This method is used to right justify the text within a string. The length of the string
is not modified, only the position of the characters within the string. It is often used
in conjunction with Take::String in order to format text.

The modified String instance passed is returned.

Example:

object x;

x = gNewWithStr(String, "ABD DEF DD ");

gJustifyRight(x); /* x = " ABD DEF DD" */

x = gNewWithStr(String, "ABD DEF");

gJustifyRight(gTake(x, 10)); /* x = " ABD DEF" */

See also: Take::String, JustifyCenter::String,

JustifyLeft::String

[NumbPieces]NumbPieces::String

n = gNumbPieces(i, d);

object i;

char d; /* delimiter */

int n; /* number of pieces */

This method is used to determine the number of sub-strings located in i. It is assumed
that i is a string which contains the delimiter character d. That delimiter character
is used to logically split string i into several sub-strings.

342 Dynace Manual

Example:

object x;

int n;

x = gNewWithStr(String, "ABD,DEF,DD");

n = gNumbPieces(x, ’,’); /* n = 3 */

See also: Piece::String

[Piece]Piece::String

r = gPiece(i, d, n);

object i;

char d; /* delimiter */

int n; /* piece wanted */

object r; /* sub-string */

This method is used to create a new string object which will contain a copy of a
sub-string of i. It is assumed that i is a string which contains the delimiter character
d. That delimiter character is used to logically split string i into several sub-strings.
n is used to specify which sub-string is desired.

This method returns a new string object which will contain a copy of the desired
sub-string. A NULL is returned if n is greater than the number of sub-strings in i.

Example:

object x, y;

x = gNewWithStr(String, "ABD,DEF,DD");

y = gPiece(x, ’,’, 0); /* y="ABD" */

y = gPiece(x, ’,’, 1); /* y="DEF" */

y = gPiece(x, ’,’, 2); /* y="DD" */

See also: NumbPieces::String

[PrintLength]PrintLength::String

sz = gPrintLength(i, ts);

object i;

int ts;

int sz;

Chapter 5: Class Library Reference 343

This method is used to obtain the length of the string associated with the instance
of the String class passed when it is printed. This method takes into account tabs,
backspaces and return characters in its calculations.

ts is the tab stop size that the method should use.

Note that this is one of the few generics which doesn’t return a Dynace object. It
returns an integer.

Example:

object x;

int sz;

x = gNewWithStr(String, "Hello\tWorld\bx");

sz = gPrintLength(x, 8);

/* sz = 13 */

See also: Size::String

[Process]Process::String

i = gProcess(i);

object i;

This method is used to process a string with embedded escape sequences. The escape
sequences will be processed and converted into the appropriate control characters.
For example "\r" will be converted in to a return control character. All the ANSI
standard escape sequences are supported. In addition, "\e" gets converted into the
escape character. "\^L" (where L may be any letter - upper or lower case) gets con-
verted into the corresponding control character, for example "\^G" will get converted
to the control-G character. "\dnnn" works like "\xnnn" except that nnn is treated
as a decimal number.

Example:

object x;

x = gNewWithStr(String, "Hello\\tWorld\\bx");

gProcess(x);

/* x will now contain the real control characters */

See also: PrintLength::String

344 Dynace Manual

[RemoveMask]RemoveMask::String

i = gRemoveMask(i, mask, text);

object i;

char *mask;

char *text;

This method is used to remove mask from text and set the resulting value to i. If
NULL or an empty string ("") is passed in to mask then i has its string value changed
to text. If NULL or an empty string ("") is passed in to text then mask is removed
from the current string value in i.

The value returned is the String instance passed (i).

Example:

object x;

char mask = "<(###) ###-####";

x = gNewWithStr(String, "(123) 456-7890");

gRemoveMask(x, mask, NULL); /*x="1234567890" */

gRemoveMask(x, mask, "(987)654-3210"); /*x="9876543210" */

gRemoveMask(x, NULL, "(123) 456-7890");/*x="(123) 456-7890"*/

See also: gMaskFunction::String, gSetMaskFiller::String,

gApplyMask::String

[SetMaskFiller]SetMaskFiller::String

r = gSetMaskFiller(i, ch);

object i;

char ch;

char r;

This method is used to set the character to be used to fill the unused space in a
masked string. This character defaults to be a space but is frequently set to be the
underscore (‘_’) character. This method returns the previous mask filler character.

Chapter 5: Class Library Reference 345

Example:

object x;

char r;

x = gNewWithStr(String, "1234567");

gApplyMask(x, "<(###) ###-####", NULL);

/* x = "() 123-4567" */

r = gSetMaskFiller(x, ’_’);

/* r = ’ ’ (space) */

gApplyMask(x, "<(###) ###-####", NULL);

/* x = "(___) 123-4567" */

See also: gMaskFunction::String, gApplyMask::String,

gRemoveMask::String

[Size]Size::String

sz = gSize(i);

object i;

int sz;

This method is used to obtain the length of the string associated with the instance
of the String class passed.

Note that this is one of the few generics which doesn’t return a Dynace object. It
returns an integer.

Example:

object x;

int sz;

x = gNewWithStr(String, "Hello World");

sz = gSize(x);

/* sz = 11 */

See also: PrintLength::String

[StringRepValue]StringRepValue::String

s = gStringRepValue(i);

object i;

object s;

346 Dynace Manual

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

Example:

object x;

object s;

x = gNewWithStr(String, "Hello");

s = gStringRepValue(x);

/* s represents "Hello" (with quotes) */

See also: StringValue::String, PrintValue::Object, Print::Object

[StringValue]StringValue::String

val = gStringValue(i);

object i;

char *val;

This method is used to obtain the char * value associated with an instance of the
String class. Note that this is one of the few generics which doesn’t return a Dynace
object. It returns a char * string.

Example:

object x;

char *val;

x = gNewWithStr(String, "Hello World");

val = gStringValue(x);

See also: New::String, ChangeValue::String

[StripCenter]StripCenter::String

i = gStripCenter(i);

object i;

This method is used to strip off blank characters (space, tab, new line, carriage return)
from both sides of a string. The return value is the modified String instance passed.

Chapter 5: Class Library Reference 347

Example:

object x, y;

x = gNewWithStr(String, " ABD DEF DD ");

gStripCenter(x); /* x = "ABD DEF DD" */

See also: StripRight::String, StripLeft::String

[StripLeft]StripLeft::String

i = gStripLeft(i);

object i;

This method is used to strip off blank characters (space, tab, new line, carriage return)
from the left side of a string. The return value is the modified String instance passed.

Example:

object x, y;

x = gNewWithStr(String, " ABD DEF DD ");

gStripLeft(x); /* x = "ABD DEF DD " */

See also: StripRight::String, StripCenter::String

[StripRight]StripRight::String

i = gStripRight(i);

object i;

This method is used to strip off blank characters (space, tab, new line, carriage
return) from the right side of a string. The return value is the modified String

instance passed.

Example:

object x, y;

x = gNewWithStr(String, " ABD DEF DD ");

gStripRight(x); /* x = " ABD DEF DD" */

See also: StripLeft::String, StripCenter::String

348 Dynace Manual

[SubString]SubString::String

so = gSubString(i, beg, num);

object i;

int beg, num;

object so;

This method is used to create a new instance of the String class which is initialized
to a copy of a sub-string of instance i. beg indicates the beginning position number
of the string to be copied, index origin zero. num is the number of characters to copy.

If beg is negative, beg will be converted to a beginning point relative to the end of
the string. Therefore, a -1 would indicate a starting point of the last character in the
string and -2 would indicate a starting point of the second to the last character in
the string. Zero indicates to start at the beginning of the string.

If num is negative, -num characters before beg will be taken.

The new String instance is returned.

Example:

object x, y;

x = gNewWithStr(String, "Hello World");

y = gSubString(x, 1, 3); /* y = "ell" */

y = gSubString(x, -5, 5); /* y = "World" */

See also: Take::String, Drop::String

[Take]Take::String

i = gTake(i, num);

object i;

int num;

This method is used to change the length of the string associated with the String

instance i. num is the new length of the string. If num is less than the previous length
of the string, the string will be terminated to the shorter length. If num is greater than
the previous length, the string will be padded with spaces until it is num characters
long.

If num is negative, characters will be taken from the end of the string and padding
will be performed at the beginning of the string.

The modified String instance passed is returned.

Chapter 5: Class Library Reference 349

Example:

object x, y;

x = gNewWithStr(String, "Hello World");

gTake(x, 4); /* x = "Hello" */

x = gNewWithStr(String, "Hello World");

gTake(x, -4); /* x = "orld" */

x = gNewWithStr(String, "ABC");

gTake(x, 5); /* x = "ABC " */

x = gNewWithStr(String, "ABC");

gTake(x, -5); /* x = " ABC" */

See also: Drop::String, SubString::String

[ToLower]ToLower::String

i = gToLower(i);

object i;

This method is used to convert all the characters in String instance i to lower case.
Non-alphabetic characters are left unchanged. The instance passed is returned.

Example:

object x;

x = gNewWithStr(String, "Hello World");

gToLower(x);

/* x = "hello world" */

See also: ToUpper::String

[ToUpper]ToUpper::String

i = gToUpper(i);

object i;

This method is used to convert all the characters in String instance i to upper case.
Non-alphabetic characters are left unchanged. The instance passed is returned.

350 Dynace Manual

Example:

object x;

x = gNewWithStr(String, "Hello World");

gToUpper(x);

/* x = "HELLO WORLD" */

See also: ToLower::String

Chapter 5: Class Library Reference 351

5.49 StringAssociation Class

This class is a subclass of Association and is used to represent an association between
a C language string and an arbitrary Dynace object. It performs all the functions as the
LookupKey and ObjectAssociation classes and is used in conjunction with the Set and
Dictionary classes. The purpose of this class is to provide an efficient mechanism to form
a common association.

See the examples included with the Dynace system for an illustration of the use of the
Set/Dictionary related classes.

5.49.1 StringAssociation Class Methods

The only class method associated with this class is one needed to create new instances of
itself.

[NewWithStrObj]NewWithStrObj::StringAssociation

i = gNewWithStrObj(StringAssociation, key, val);

char *key;

object val; /* or NULL */

object i;

This class method creates instances of the StringAssociation class. key is used to
initialize the key associated with the instance created and val is used to initialize its
associated value. Note that internally key is copied into an allocated buffer so that
it is all right to reuse the buffer passed to this method.

The new instance is returned.

5.49.2 StringAssociation Instance Methods

The instance methods associated with this class are used to obtain, change and print the key
and value associated with the instance. Additional functionality, although implemented by
this class, is documented in StringAssociation’s superclass, Association. This is done
because of the common interface these methods share with all subclasses of Association.

[ChangeStringKey]ChangeStringKey::StringAssociation

i = gChangeStringKey(i, key);

object i;

char *key;

This method is used to change the key associated with instance i. key is the new
key. The old key is simply replaced. This method returns i.

See also: StringKey::StringAssociation,
ChangeValue::StringAssociation

352 Dynace Manual

[ChangeValue]ChangeValue::StringAssociation

old = gChangeValue(i, val);

object i;

object val; /* or NULL */

object old;

This method is used to change the value associated with an association, i, to a value,
val. The old value is simply no longer associated with the instance. It is not disposed.
This method returns the old value being replaced.

See also: Value::StringAssociation,
ChangeStringKey::StringAssociation

[Copy]Copy::StringAssociation

so = gCopy(i);

object i, so;

This method is used to create a new instance of the StringAssociation class with
the same value as StringAssociation i. Or put more simply, it makes a copy. The
new StringAssociation instance is returned.

See also: DeepCopy::StringAssociation

[DeepCopy]DeepCopy::StringAssociation

so = gDeepCopy(i);

object i, so;

This method is used to create a new instance of the StringAssociation class which
contains a copy of the value from the original StringAssociation. DeepCopy is used
to create the copy of the value. The new StringAssociation instance is returned.

See also: Copy::StringAssociation

[DeepDispose]DeepDispose::StringAssociation

r = gDeepDispose(i);

object i;

object r; /* NULL */

Chapter 5: Class Library Reference 353

This method is used to dispose of a StringAssociation instance. It also disposes of
the value associated with the instance by the use of its DeepDispose method.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: Dispose::StringAssociation

[Dispose]Dispose::StringAssociation

r = gDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of a StringAssociation instance. It does not dispose
of its associated value.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: DeepDispose::StringAssociation

[Key]Key::StringAssociation

key = gKey(i);

object i;

object key;

This method is used to obtain the key associated with instance i.

See also: StringKey::StringAssociation

[StringKey]StringKey::StringAssociation

key = gStringKey(i);

object i;

char *key;

This method is used to obtain the key associated with instance i.

See also: Key::StringAssociation,
ChangeStringKey::StringAssociation, Value::StringAssociation

354 Dynace Manual

[StringRepValue]StringRepValue::StringAssociation

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
value associated with i. This is often used to print or display the value. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

See also: PrintValue::Object, Print::Object

[Value]Value::StringAssociation

val = gValue(i);

object i;

object val;

This method is used to obtain the value associated with i.

See also: ChangeValue::StringAssociation,
StringKey::StringAssociation

Chapter 5: Class Library Reference 355

5.50 StringDictionary Class

This class combines the functionality of the Set and StringAssociation classes in order
to store a collection of arbitrary key/value pairs.

The difference between this class and the Dictionary class is that this class only accepts
C language strings as keys. This class provides an efficient and simple to use means of
representing a commonly needed collection.

This class is a subclass of the Set class and therefore inherits all of its functionality.

See the examples included with the Dynace system for an illustration of the use of the
Set/Dictionary related classes.

5.50.1 StringDictionary Class Methods

There are no class methods for this class. It inherits the ability to create instances of itself
through its superclass, Set.

5.50.2 StringDictionary Instance Methods

The instance methods associated with this class are used to add, retrieve and remove
key/value pairs from the Dictionary. Note that additional functionality may be obtained
through its superclass, Set.

[AddStr]AddStr::StringDictionary

r = gAddStr(i, key, value);

object i;

char *key

object value;

object r;

This method is used to add a new key/value pair to the StringDictionary instance
(i). If an object with the same key already exists in the Dictionary it will be left as
is and AddStr will return NULL. If the key/value objects are added AddStr will return
the StringAssociation instance created to represent the key/value pair passed.

See also: FindStr::StringDictionary, FindValueStr::StringDictionary,

ChangeValueWithStr::StringDictionary,

RemoveStr::StringDictionary

356 Dynace Manual

[ChangeValueWithStr]ChangeValueWithStr::StringDictionary

r = gChangeValueWithStr(i, key, value);

object i;

char *key

object value;

object r;

This method is used to change the value associated with an existing key/value pair to
the StringDictionary instance (i). key represents the identity of the pre-existing
key/value pair and value represents the new value to be associated with the key.

Normally, this method changes the value part of the association and returns the
previous value which is not disposed. If key doesn’t identify a pre-existing association,
this method simply returns NULL.

See also: FindStr::StringDictionary, FindValueStr::StringDictionary,

RemoveStr::StringDictionary

[DeepDisposeStr]DeepDisposeStr::StringDictionary

r = gDeepDisposeStr(i, key);

object i;

char *key;

object r;

This method is used to remove and dispose of a key/value pair from a Dictionary.
If found and removed i is returned. If key is not found NULL is returned.

The value and StringAssociation used to bind the two are all deep disposed.

This method is the same as DisposeStr::StringDictionary.

See also: RemoveStr::StringDictionary

[Dispose]Dispose::StringDictionary

r = gDispose(i);

object i;

object r; /* NULL */

This method is used to dispose of an entire Dictionary. It does not dispose of any
of the values but does dispose of all the associations used to represent the pair.

Chapter 5: Class Library Reference 357

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

See also: RemoveStr::StringDictionary, DeepDispose::Set,

DisposeAllNodes::StringDictionary

[DisposeAllNodes]DisposeAllNodes::StringDictionary

i = gDisposeAllNodes(i);

object i;

This method is used to remove all objects in a StringDictionary instance without
disposing of the instance itself. The objects in the StringDictionary are simply
disassociated from the StringDictionary instance and are not disposed.

The value returned is always the instance passed.

See also: DeepDisposeAllNodes::Set, Dispose::StringDictionary

[DisposeStr]DisposeStr::StringDictionary

r = gDisposeStr(i, key);

object i;

char *key;

object r;

This method is used to remove and dispose of a key/value pair from a Dictionary.
If found and removed i is returned. If key is not found NULL is returned.

The value and StringAssociation used to bind the two are all deep disposed.

This method is the same as DeepDisposeStr::StringDictionary.

See also: RemoveStr::StringDictionary

[FindStr]FindStr::StringDictionary

r = gFindStr(i, key);

object i;

char *key;

object r;

358 Dynace Manual

This method is used to find the instance of the StringAssociation class which is
used to represent the key/value pair stored under key in Dictionary i. If key is not
found NULL is returned.

See also: FindValueStr::StringDictionary

[FindAddStr]FindAddStr::StringDictionary

r = gFindAddStr(i, key, value);

object i;

char *key;

object value;

object r;

This method is used to find and return the instance of the StringAssociation class
used to represent the key/value pair stored under the key key. If it is not found a
new StringAssociation will be added and returned which represent the key/value
pair representing key and value.

See also: FindStr::StringDictionary, FindValueStr::StringDictionary

[FindValueStr]FindValueStr::StringDictionary

r = gFindValueStr(i, key);

object i;

char *key;

object r;

This method is used to find the value stored under key in Dictionary i. If key is
not found NULL is returned.

See also: FindStr::StringDictionary

[RemoveStr]RemoveStr::StringDictionary

r = gRemoveStr(i, key);

object i;

char *key;

object r;

This method is used to remove a key/value pair from a Dictionary. If found and
removed i is returned. If key is not found NULL is returned.

Chapter 5: Class Library Reference 359

The value is not disposed, however, the StringAssociation used to bind the two is.

See also: DeepDisposeStr::StringDictionary

360 Dynace Manual

5.51 Thread Class

The Thread class gives Dynace the ability to create, manage and execute multiple threads
of execution in a timesharing fashion. See the manual for a detailed description of threads.

See the examples included with the Dynace system for an illustration of the use of the
thread / pipe / semaphore related classes.

5.51.1 Thread Class Methods

The class methods associated with the Thread class provide a means to create new instances
of the Thread class. Each instance represents a unique thread of execution. The class
methods also provide other functionality which is not related to any particular thread, such
as the ability to initialize the threading system.

[BlockingGetkey]BlockingGetkey::Thread

c = gBlockingGetkey(Thread)

int c;

This method is used to get a key from the keyboard. It does it in a way that allows
other threads to continue if there is no key ready. This allows the system to continue
to operate while waiting for a user entry.

The thread which calls this method will be placed on hold until a key has been hit.
At that time the thread will be enabled and the method will return the key hit.

Only one thread may use this method at a time.

See also: StartThreader

[FindStr]FindStr::Thread

t = gFindStr(Thread, name)

char *name;

object t;

This method is used to obtain a thread object from its associated name. If found it is
returned, otherwise NULL is returned. Note that the name of the thread which started
the thread system is “main”. If name is NULL Find returns the currently running
thread object.

See also: NewThread::Thread

Chapter 5: Class Library Reference 361

[NewThread]NewThread::Thread

t = gNewThread(Thread, name, fun, priority, arg, run,

autoDispose)

char *name;

int (*fun)(void *);

int priority;

void *arg;

int run;

int autoDispose;

object t;

This class method creates instances of the Thread class. Each thread represents a
unique thread of execution.

name is the name of the thread. This name may be used to access the thread object
via its name at a future point. name may be null if no particular name is desired.

fun is the C language function which will implement the process to be run by the new
thread. When fun is first executed it is passed the pointer defined by arg as its only
argument. fun may return an integer result which may be accessed by other threads.

priority sets the initial priority of the thread. This is a number between 1 and 30000.
The higher the number the greater the priority. Threads of higher priority (which are
ready to run) always run before any threads of lesser priority. Only ready threads of
the same priority share CPU time. There is a macro named DEFAULT_PRIORITY which
may be used to create threads which share resources equally. Creating higher or lower
priority threads may be accomplished relative to the DEFAULT_PRIORITY macro. Note
that all ready threads of a higher priority must complete before threads of a lower
priority will receive any CPU time.

arg provides a simple mechanism to pass data to the thread when it starts. When
fun is started it is passed a single argument arg.

run is a flag to tell the system how to initialize the thread. If run is 1 the new
thread will be created in a ready-to-run state. It will be placed on the queue of ready
threads and will automatically start when it gets CPU time. If the thread is started
at a higher priority than the thread which created the new thread then the current
thread will be timed-out and the new thread will immediately start. If run is set to
0 the new thread will be created in a hold state and must be released from this state
in order to start running.

autoDispose is used to control what happens to the thread object once the thread
completes. If set to 1 the thread will be automatically disposed when it completes. If
set to 0 the thread will remain in the system until manually disposed. This may be
useful if the return value of the thread is desired after it has completed. Note that
the garbage collector never collects thread objects. They must be handled manually.
Note also that the way the system was implemented completed threads and threads
on hold take up 0 CPU resources.

362 Dynace Manual

The value returned (t) is the thread object created. If not kept it may be obtained
later by the use of the FindStr::Thread method. This thread object may be used
for many purposes to control a thread. You may hold, release, change priority, kill or
otherwise query the state of the thread via this object.

Note that the threader must be started prior to the creation of any new threads. This
may be accomplished by the use of the StartThreader method.

See also: StartThreader, FindStr::Thread

5.51.2 Thread Instance Methods

The instance methods associated with this class are used to manage and query various
aspects related to particular threads. Each instance represents a single unique thread.

[DeepDispose]DeepDispose::Thread

r = gDeepDispose(t)

object t;

object r; /* NULL */

This method is used to permanently stop the execution of an arbitrary thread, t (if
it is running) and dispose of it. t may be the current thread, in which case the next
thread on the queue will start.

In order to give the thread a return value use Kill::Thread and then this method.

This method is the same as Dispose::Thread.

See also: Kill::Thread, Hold::Thread

[Dispose]Dispose::Thread

r = gDispose(t)

object t;

object r; /* NULL */

This method is used to permanently stop the execution of an arbitrary thread, t (if
it is running) and dispose of it. t may be the current thread, in which case the next
thread on the queue will start.

In order to give the thread a return value use Kill::Thread and then this method.

This method is the same as DeepDispose::Thread.

The value returned is always NULL and may be used to null out the variable which
contained the object being disposed in order to avoid future accidental use.

Chapter 5: Class Library Reference 363

See also: Kill::Thread, Hold::Thread

[ChangePriority]ChangePriority::Thread

t = gChangePriority(t, pri)

object t;

int pri;

This method is used to change the priority of thread t. Thread t may be the currently
running thread. If thread t is changed to a higher priority than the currently running
thread, the currently running will immediately release the CPU to thread t.

The priority is a number between 1 and 30000. The higher the number the greater the
priority. Threads of higher priority (which are ready to run) always run before any
threads of lesser priority. Only ready threads of the same priority share CPU time.
There is a macro named DEFAULT_PRIORITY which may be used to create threads
which share resources equally. Creating higher or lower priority threads may be
accomplished relative to the DEFAULT_PRIORITY macro. Note that all ready threads
of a higher priority must complete before threads of a lower priority will receive any
CPU time.

See also: Priority::Thread, NewThread::Thread, State::Thread

[Hold]Hold::Thread

t = gHold(t)

object t;

This method is used to place a temporary hold on a thread (t). The thread stops
execution and waits until released. Threads on hold take no CPU time. Any number
of threads may place any number of holds on any threads, however, an equal number
of releases are required to release a thread which has been held multiple times. A
thread may put itself on hold. The value returned is the thread passed.

See also: Release::Thread, Kill::Thread

[IntValue]IntValue::Thread

r = gIntValue(t)

object t;

int r;

364 Dynace Manual

This method is used to obtain the return value of a thread (t) which has completed
or been killed. If the thread is still running (or on hold) this method will just return
0.

See also: State::Thread, WaitFor::Thread, Kill::Thread

[Kill]Kill::Thread

t = gKill(t, rtn)

object t;

int rtn;

This method is used to permanently stop the execution of an arbitrary thread, t.
Once this method is called on a thread it cannot be run again. t may be the current
thread, in which case the next thread on the queue will start. Thread t is not disposed.
Attempting to Kill a thread which has already been killed or completed has no ill
effect, rtn is just ignored.

rtn represents the return value of the thread, which may be queried by other threads.
Any holds associated with the thread will be expunged. Thread t is returned.

Note that killed threads take up no CPU time.

See also: Dispose::Thread, Hold::Thread

[Name]Name::Thread

nam = gName(t)

object t;

char *nam;

This method is used to obtain the name of thread t.

See also: NewThread::Thread, State::Thread, Priority::Thread

[Priority]Priority::Thread

pri = gPriority(t)

object t;

int pri;

This method is used to obtain the priority of thread t.

Chapter 5: Class Library Reference 365

The priority is a number between 1 and 30000. The higher the number the greater the
priority. Threads of higher priority (which are ready to run) always run before any
threads of lesser priority. Only ready threads of the same priority share CPU time.
There is a macro named DEFAULT_PRIORITY which may be used to create threads
which share resources equally. Creating higher or lower priority threads may be
accomplished relative to the DEFAULT_PRIORITY macro. Note that all ready threads
of a higher priority must complete before threads of a lower priority will receive any
CPU time.

See also: ChangePriority::Thread, NewThread::Thread, State::Thread

[Release]Release::Thread

t = gRelease(t, yld)

object t;

int yld;

This method is used to release a hold placed by the Hold method on a thread (t).
The thread will not really be released until the number of calls to Release is equal
to the number of times Hold was called on thread t.

yld is a flag. It indicates whether the current thread should yield to the thread
being released (if the thread being released has a higher priority). If yld is 1 and the
thread being released has a higher priority than the current thread the system will
immediately transfer the CPU to the thread being released. If yld is set to 0 the
current thread will be allowed to complete its time slice. The value returned is the
thread passed.

See also: Hold::Thread

[State]State::Thread

s = gState(t)

object t;

int s;

This method is used to obtain the current state of a thread (t). The valid states are
macros defined in dynl.h and are defined as follows:

366 Dynace Manual

NEW_THREAD New thread which hasn’t started running

yet

RUNNING_THREAD Thread ready to run

HOLD_THREAD Thread placed on hold

DONE_THREAD Thread has completed or been killed

WAITING_FOR_THREAD Thread waiting for another thread to

complete

WAITING_FOR_SEMAPHORE Thread waiting for semaphore

[WaitFor]WaitFor::Thread

r = gWaitFor(t)

object t;

int r;

This method is used to place the current thread on hold until thread t completes,
gets killed or disposed. At that point the thread gets released and WaitFor returns
the return value from thread t. Note that threads waiting for other threads take up
no CPU time.

See also: Kill::Thread, Dispose::Thread, Hold::Thread

5.51.3 Thread Macros

The thread system includes a few macros which are used to provide some additional func-
tionality without incurring much system overhead.

[ENABLE THREADER]ENABLE_THREADER

ENABLE_THREADER;

This macro is used to re-enable the threader after the INHIBIT_THREADER has been
used. Since consecutive calls to INHIBIT_THREADER stack, an equal number of ENABLE_
THREADER calls must be used.

The two macros, INHIBIT_THREADER and ENABLE_THREADER, are used to surround
code which you want to be absolutely certain that a context switch doesn’t occur
during. Since these macros nest it is ok if between a pair a function is called which
also uses these macros.

Note that when the threader is enabled a context switch can only occur during a
generic function call or by the use of the YIELD macro.

Chapter 5: Class Library Reference 367

Example:

INHIBIT_THREADER;

.

(protected code)

.

ENABLE_THREADER;

See also: INHIBIT_THREADER, StartThreader

[INHIBIT THREADER]INHIBIT_THREADER

INHIBIT_THREADER;

This macro is used to temporarily disable the threader. Once disabled no context
switches will occur until the threader is re-enabled by the use of the ENABLE_THREADER
macro. Consecutive calls to INHIBIT_THREADER stack, therefore, an equal number of
ENABLE_THREADER calls must be used to re-enable the threader.

The two macros, INHIBIT_THREADER and ENABLE_THREADER, are used to surround
code which you want to be absolutely certain that a context switch doesn’t occur
during. Since these macros nest it is ok if between a pair a function is called which
also uses these macros.

Note that when the threader is enabled a context switch can only occur during a
generic function call or by the use of the YIELD macro.

Example:

INHIBIT_THREADER;

.

(protected code)

.

ENABLE_THREADER;

See also: ENABLE_THREADER, StartThreader

[StartThreader]StartThreader

StartThreader(argc)

int argc;

This macro is used to initialize the threading system. It must be called before any
other thread operations (except for initializing the thread class). It must be called
from the C function called main, and should only be called once. It is typically called
immediately following the Dynace system initialization.

368 Dynace Manual

Once this macro is called all execution is performed by threads. The program
(main) which called StartThreader becomes the single running thread with the
name “main”. Any future threads created at the default priority will share CPU
time equally with the main thread. There is nothing special about the main thread.

argc is simply the argument normally passed to C language main functions. The
value doesn’t matter. It is used to obtain the address of the stack.

See also: NewThread::Thread

[YIELD]YIELD

YIELD;

The YIELD macro is used to force a context switch (unless the threader has been
disabled with the INHIBIT_THREADER macro).

Since Dynace only provides automatic context switching during a generic function
call, if a thread is running a long compute cycle without any generic function calls
it will hog the system until a generic is called unless the YIELD macro is used. This
macro may be placed at regular intervals in the code to be sure that it shares the CPU
time. The YIELD macro will only cause an actual context switch when the threads
time is complete, otherwise YIELD will do nothing.

Example:

while (some condition) {

do something;

YIELD;

}

See also: StartThreader

Chapter 5: Class Library Reference 369

5.52 Time Class

The Time class uses the same set of instance and class methods as the LongInteger class.
The equivalent C language representation would be a long integer in the form HHMMSSLLL

so 1:23:45.678 pm would be represented as 132345678L.

5.52.1 Time Class Methods

The Time class has two class methods to create instances.

[NewWithLong]NewWithLong::Time

i = gNewWithLong(Time, tm);

long tm;

object i;

This class method creates instances of the Time class. tm represents the initial time
value represented.

Example:

object x;

x = gNewWithLong(Time, 132345678L); /* x = 1:23:45.678 pm */

See also: Now::Time, FormatTime::Time, Dispose::Object

[Now]Now::Time

i = gNow(Time);

object i;

This class method creates instances of the Time class which represents the current
time contained within the system.

Example:

object x;

x = gNow(Time); /* x = the current time */

See also: NewWithLong::Time, FormatTime::Time, Dispose::Object

370 Dynace Manual

5.52.2 Time Instance Methods

A portion of the Time class’s functionality is identical to the functionality of the
LongInteger class. The remaining functionality is defined by the following specific
methods.

[AddHours]AddHours::Time

i = gAddHours(i, hours);

object i;

long hours;

This method is used to add an arbitrary number of hours (hours) to time i. Adding
an hour that goes past midnight will cause the time to cycle around to morning. The
value returned is the object passed.

Example:

object tm;

tm = gNewWithLong(Time, 234500000L);

gAddHours(tm, 2L); /* tm = 14500000L (1:45:00.000 am) */

See also: AddMilliseconds::Time, AddMinutes::Time, AddSeconds::Time

[AddMilliseconds]AddMilliseconds::Time

i = gAddMilliseconds(i, m);

object i;

long m;

This method is used to add an arbitrary number of milliseconds (m) to time i. Adding
a millisecond that goes past midnight will cause the time to cycle around to morning.
The value returned is the object passed.

Example:

object tm;

tm = gNewWithLong(Time, 234500000L);

gAddMilliseconds(tm, 20L);

/* tm = 500020L (11:45:00.020 pm) */

See also: AddHours::Time, AddMinutes::Time, AddSeconds::Time

Chapter 5: Class Library Reference 371

[AddMinutes]AddMinutes::Time

i = gAddMinutes(i, m);

object i;

long m;

This method is used to add an arbitrary number of minutes (m) to time i. Adding a
minute that goes past midnight will cause the time to cycle around to morning. The
value returned is the object passed.

Example:

object tm;

tm = gNewWithLong(Time, 234500000L);

gAddMinutes(tm, 20L); /* tm = 500000L (1:05:00.000 am) */

See also: AddHours::Time, AddMilliseconds::Time, AddSeconds::Time

[AddSeconds]AddSeconds::Time

i = gAddSeconds(i, s);

object i;

long s;

This method is used to add an arbitrary number of seconds (s) to time i. Adding a
second that goes past midnight will cause the time to cycle around to morning. The
value returned is the object passed.

Example:

object dt;

tm = gNewWithLong(Time, 234500000L);

gAddSeconds(tm, 20L); /* tm = 520000L (11:45:20.000 pm) */

See also: AddHours::Time, AddMilliseconds::Time, AddMinutes::Time

[ChangeLongValue]ChangeLongValue::Time

i = gChangeLongValue(i, val);

object i;

long val;

372 Dynace Manual

This method is used to change the time value associated with an instance of the Time
class. Notice that this method returns the instance being passed. val is the new time
value.

Example:

object tm;

tm = gNewWithLong(Time, 234500000L);

gChangeLongValue(tm, 44500000L); /* tm = 4:45:00.000 am */

See also: ChangeTimeValue::Time, NewWithLong::Time

[ChangeTimeValue]ChangeTimeValue::Time

i = gChangeTimeValue(i, val);

object i;

long val;

This method is used to change the time value associated with an instance of the Time
class. Notice that this method returns the instance being passed. val is the new time
value.

Example:

object tm;

tm = gNewWithLong(Time, 234500000L);

gChangeTimeValue(tm, 44500000L); /* tm = 4:45:00.000 am */

See also: ChangeLongValue::Time, NewWithLong::Time

[ChangeValue]ChangeValue::Time

i = gChangeValue(i, v);

object i;

object v;

This method is used to change the value associated with an instance of the Time

class. Notice that this method returns the instance being passed. v is an object
which represents the new time value.

Chapter 5: Class Library Reference 373

Example:

object x, y;

x = gNewWithLong(Time, 234500000L);

y = gNewWithLong(Time, 44500000L);

gChangeValue(x, y); /* x is changed to 4:45:00.000 am */

See also: ChangeLongValue::Time, ChangeTimeValue::Time

[Compare]Compare::Time

r = gCompare(i, obj);

object i;

object obj;

int r;

This method is used by the generic container classes to determine the relationship of
the values represented by i and obj. r is -1 if the time represented by i is less than
the time represented by obj, 1 if the time value of i is greater than obj, and 0 if they
are equal.

See also: Hash::Time

[Difference]Difference::Time

r = gDifference(i, tm);

object i;

object tm;

long r;

This method is used to obtain the difference, in milliseconds, between two time ob-
jects.

Example:

object tm1, tm2;

long r;

tm1 = gNewWithLong(Time, 234515023L);

tm2 = gNewWithLong(Time, 234515000L);

r = gDifference(dt2, dt1); /* r = 23L */

See also: TimeDifference::Time

374 Dynace Manual

[FormatTime]FormatTime::Time

s = gFormatTime(i, fmt);

object i;

char *fmt;

object s;

This method returns an instance of the String class which is a formatted represen-
tation of the time associated with instance i. fmt is the format specification used
to determine the resulting String object. Each character in fmt is sequentially pro-
cessed and except for the character ‘%’, they are simply copied to the resulting String
object. Whenever this method encounters the ‘%’ character, the character following
is used to determine what aspect and format of the time represented by i should be
added to the resultant String object. It works much like the standard C printf.
The following table indicates the available formatting option characters:

% the % character

g hour in military (government) time.

Eleven o’clock is 23:00 (5)

G the hour to two places in military (government)

time (05)

h hour (5)

H the hour to two places (05)

m minutes (5)

M the minutes to two places (05)

s seconds (5)

S the seconds to two places (05)

l milliseconds (20)

L the milliseconds to three places (020)

p the am / pm flag in lower case (pm)

p the am / pm flag in upper case (PM)

Example:

object s, tm;

tm = gNow(Time);

s = gFormatTime(tm, "%h:%M:%S.%L %p");

/* s contains "5:45:23.678 pm" (or whatever) */

See also: StringRepValue::Time

Chapter 5: Class Library Reference 375

[Hash]Hash::Time

val = gHash(i);

object i;

int val;

This method is used by the generic container classes to obtain hash values for the
time object. val is a hash value between 0 and a large integer value.

See also: Compare::Time

[Hours]Hours::Time

h = gHours(i);

object i;

int h;

This method returns the number of hours associated with an instance of the Time

class.

Example:

object tm;

tm = gToday(Time);

h = gHours(tm); /* h contains 14 (or whatever) */

See also: Milliseconds::Time, Minutes::Time, Seconds::Time

[LongValue]LongValue::Time

val = gLongValue(i);

object i;

long val;

This method is used to obtain the long value that represents the time associated with
an instance the Time class. Note that this is one of the few generics which doesn’t
return a Dynace object. It returns a long.

376 Dynace Manual

Example:

object x;

long val;

x = gNewWithLong(LongInteger, 234500000L);

val = gLongValue(x); /* val = 234500000L */

See also: NewWithLong::Time, ChangeLongValue::Time, TimeValue::Time

[Milliseconds]Milliseconds::Time

m = gMilliseconds(i);

object i;

int m;

This method returns the number of milliseconds associated with an instance of the
Time class.

Example:

object tm;

tm = gToday(Time);

m = gMilliseconds(tm); /* m contains 154 (or whatever) */

See also: Hours::Time, Minutes::Time, Seconds::Time

[Minutes]Minutes::Time

m = gMinutes(i);

object i;

int m;

This method returns the number of minutes associated with an instance of the Time
class.

Example:

object tm;

tm = gToday(Time);

m = gMinutes(tm); /* h contains 55 (or whatever) */

Chapter 5: Class Library Reference 377

See also: Hours::Time, Milliseconds::Time, Seconds::Time

[Seconds]Seconds::Time

m = gSeconds(i);

object i;

int s;

This method returns the number of seconds associated with an instance of the Time

class.

Example:

object tm;

tm = gToday(Time);

s = gSeconds(tm); /* s contains 30 (or whatever) */

See also: Hours::Time, Milliseconds::Time, Minutes::Time

[StringRepValue]StringRepValue::Time

s = gStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
time associated with i. This is often used to print or display the time. It is also
used by PrintValue::Object and indirectly by Print::Object (two methods useful
during the debugging phase of a project) in order to directly print an object’s value.

Example:

object x;

object s;

x = gNewWithLong(Time, 234500000L);

s = gStringRepValue(x);

/* s represents "11:45:00.000 pm" */

See also: PrintValue::Object, Print::Object, FormatTime::Time,

TimeStringRepValue::Time

378 Dynace Manual

[TimeDifference]TimeDifference::Time

r = gTmieDifference(i, tm);

object i;

object tm;

long r;

This method is used to obtain the difference, in milliseconds, between two time ob-
jects.

Example:

object tm1, tm2;

long r;

tm1 = gNewWithLong(Time, 234515023L);

tm2 = gNewWithLong(Time, 234515000L);

r = gTimeDifference(dt2, dt1); /* r = 23L */

See also: Difference::Time

[TimeStringRepValue]TimeStringRepValue::Time

s = gTimeStringRepValue(i);

object i;

object s;

This method is used to generate an instance of the String class which represents the
time associated with i. This is often used to print or display the time.

Example:

object x;

object s;

x = gNewWithLong(Time, 234500000L);

s = gTimeStringRepValue(x);

/* s represents "11:45:00.000 pm" */

See also: PrintValue::Object, Print::Object, FormatTime::Time,

StringRepValue::Time

Chapter 5: Class Library Reference 379

[TimeValue]TimeValue::Time

val = gTimeValue(i);

object i;

long val;

This method is used to obtain the long value that represents the time associated with
an instance the Time class. Note that this is one of the few generics which doesn’t
return a Dynace object. It returns a long.

Example:

object x;

long val;

x = gNewWithLong(LongInteger, 234500000L);

val = gTimeValue(x); /* val = 234500000L */

See also: NewWithLong::Time, ChangeLongValue::Time, LongValue::Time

[ValidTime]ValidTime::Time

r = gValidTime(i);

object i;

int r;

This method is used to determine the validity of a time. If i is a valid time 1 is
returned and 0 otherwise.

Example:

object tm;

int r;

tm = gNewWithLong(Time, 234515899L);

r = gValidTime(tm); /* r = 1 */

tm = gNewWithLong(Time, 254500899L);

r = gValidTime(tm); /* r = 0 */

tm = gNewWithLong(Time, 114567000L);

r = gValidTime(tm); /* r = 0 */

380 Dynace Manual

5.53 UnsignedShortArray Class

This class, which is a subclass of NumberArray, is used to represent arbitrary shaped arrays
of the C language unsigned short data type in an efficient manner. Although this class
implements much of its own functionality it is documented within the NumberArray and
Array classes because the interface is shared by all subclasses of the NumberArray class.

Chapter 5: Class Library Reference 381

5.54 UnsignedShortInteger Class

The UnsignedShortInteger class is used to represent the C language unsigned short

data type as a Dynace object. It is a subclass of the Number class. Even though the
UnsignedShortInteger class implements most of its own functionality, it is documented as
part of the Number class because most of the interface is the same for all subclasses of the
Number class. Differences are documented in this section.

5.54.1 UnsignedShortInteger Class Methods

The UnsignedShortInteger class has only one class method and it is used to create new
instances of itself.

[NewWithUnsigned]NewWithUnsigned::UnsignedShortInteger

i = gNewWithUnsigned(UnsignedShortInteger, s);

unsigned s;

object i;

This class method creates instances of the UnsignedShortInteger class. s is the
initial value of the integer being represented. Note that s is of type unsigned. That
is because if you pass an unsigned short type to a generic function (which uses a
variable argument declaration) the C language will automatically promote it to an
unsigned.

The value returned is a Dynace instance object which represents the integer passed.

Note that the default disposal methods are used by this class since there are no special
storage allocation requirements.

Example:

object x;

x = gNewWithUnsigned(UnsignedShortInteger, 55);

See also: UnsignedShortValue::Number, Dispose::Object

5.54.2 UnsignedShortInteger Instance Methods

The instance methods associated with the UnsignedShortInteger class provide a means
of changing and obtaining the value associated with an instance of the
UnsignedShortInteger class. All of the UnsignedShortInteger class instance methods are
documented in the Number class because of their common interface with all other subclasses
of the Number class.

383

Method, Macro, Function And Variable Index

A
accessIVs . 128
Add::Set . 304
AddAfter::Link . 226
AddBefore::Link . 227
AddDays::Date . 185
AddFirst::LinkList . 234
AddFirst::LinkObject . 242
AddHours::DateTime . 193
AddHours::Time . 370
AddInt::IntegerDictionary 221
AddLast::LinkList . 235
AddLast::LinkObject . 243
AddMilliseconds::DateTime 193
AddMilliseconds::Time . 370
AddMinutes::DateTime . 194
AddMinutes::Time . 371
AddMonths::Date . 186
AddSeconds::DateTime . 194
AddSeconds::Time . 371
AddStr::StringDictionary 355
AddValue::BTree . 169
AddValue::Dictionary . 200
AddYears::Date . 186
Advance::Stream . 321
Alloc::Behavior . 98
Append::String . 331
ApplyMask::String . 331
ArrayPointer::Array . 161
Attributes::FindFile . 213

B
BasicSize::Object . 89
BitValue::BitArray . 167
BlockingGetkey::Thread . 360
Build::String . 327, 332

C
CalToJul::Date . 184
ChangeBitValue::BitArray 168
ChangeCharAt::String . 333
ChangeCharValue::Number . 263
ChangeCharValue::NumberArray 272
ChangeDateTimeValues::DateTime 195
ChangeDateValue::Date . 187
ChangeDoubleValue::Number 263
ChangeDoubleValue::NumberArray 272
ChangeFunction::Method . 110
ChangeIntKey::IntegerAssociation 218
ChangeKey::LookupKey . 258
ChangeLongValue::DateTime 195
ChangeLongValue::Number . 264

ChangeLongValue::NumberArray 273
ChangeLongValue::Time . 371
ChangeNext::Link . 227
ChangePrevious::Link . 228
ChangePriority::Thread . 363
ChangeRegisteredMemory::Dynace 117
ChangeShortValue::Number 264
ChangeShortValue::NumberArray 274
ChangeStringKey::StringAssociation 351
ChangeStrValue::String . 333
ChangeTimeValue::Time . 372
ChangeUShortValue::Number 265
ChangeUShortValue::NumberArray 275
ChangeValue::IntegerAssociation 219
ChangeValue::LinkValue . 253
ChangeValue::Number . 265
ChangeValue::NumberArray 275
ChangeValue::ObjectArray 281
ChangeValue::ObjectAssociation 282
ChangeValue::Pointer . 290
ChangeValue::PointerArray 294
ChangeValue::String . 334
ChangeValue::StringAssociation 352
ChangeValue::Time . 372
ChangeValueWithInt::IntegerDictionary 222
ChangeValueWithObj::Dictionary 201
ChangeValueWithStr::StringDictionary 356
CharValue::Number . 266
CharValue::NumberArray . 276
CharValueAt::String . 334
ChkArg . 128
ChkArgNul . 129
ChkArgTyp . 130
ChkArgTypNul . 131
ClassOf . 132
cmcPointer . 132
cmeth . 133
cMethodFor . 134
cmiPointer . 134
Compare::Association . 166
Compare::DateTime . 196
Compare::Number . 266
Compare::Object . 89
Compare::Pointer . 291
Compare::String . 335
Compare::Time . 373
CompareI::String . 335
CompareN::String . 336
CompareNI::String . 336
Copy::Array . 162
Copy::Constant . 182
Copy::Link . 228
Copy::LinkList . 235
Copy::Object . 90

384 Dynace Manual

Copy::Set . 304
Copy::String . 337
Copy::StringAssociation . 352
Count::Semaphore . 299
cSuper . 135
CurMemUsed::Dynace . 117
cvMethodFor . 136

D
DateTimeDifference::DateTime 196
DateTimeValues::DateTime 197
DateValue::Date . 187
DayName::Date . 188
DeepCopy::Array . 162
DeepCopy::Constant . 182
DeepCopy::IntegerAssociation 219
DeepCopy::Link . 228
DeepCopy::LinkList . 235
DeepCopy::LinkValue . 254
DeepCopy::LookupKey . 259
DeepCopy::Object . 90
DeepCopy::ObjectAssociation 283
DeepCopy::Set . 305
DeepCopy::String . 337
DeepCopy::StringAssociation 352
DeepDispose::Array . 162
DeepDispose::BTree . 170
DeepDispose::Constant . 182
DeepDispose::File . 210
DeepDispose::IntegerAssociation 219
DeepDispose::Link . 228
DeepDispose::LinkList . 236
DeepDispose::LinkValue . 254
DeepDispose::LookupKey . 259
DeepDispose::LowFile . 262
DeepDispose::Object . 91
DeepDispose::ObjectAssociation 283
DeepDispose::Pipe . 287
DeepDispose::Semaphore . 299
DeepDispose::Set . 305
DeepDispose::String . 338
DeepDispose::StringAssociation 352
DeepDispose::Thread . 362
DeepDisposeAllNodes::BTree 170
DeepDisposeAllNodes::LinkList 236
DeepDisposeAllNodes::Set 306
DeepDisposeFirst::LinkList 236
DeepDisposeGroup::Set . 306
DeepDisposeInt::IntegerDictionary 222
DeepDisposeLast::LinkList 237
DeepDisposeObj::BTree . 170
DeepDisposeObj::Dictionary 201
DeepDisposeObj::Set . 306
DeepDisposeStr::StringDictionary 356
defGeneric . 137
Difference::Date . 188
Difference::Time . 373

Dispose::Array . 162
Dispose::BTree . 171
Dispose::Constant . 183
Dispose::Dictionary . 201
Dispose::File . 210
Dispose::IntegerDictionary 222
Dispose::Link . 229
Dispose::LinkList . 237
Dispose::LowFile . 262
Dispose::Object . 91
Dispose::Pipe . 288
Dispose::Semaphore . 300
Dispose::Set . 307
Dispose::Socket . 316
Dispose::String . 338
Dispose::StringAssociation 353
Dispose::StringDictionary 356
Dispose::Thread . 362
Dispose1::Set . 307
DisposeAllNodes::BTree . 171
DisposeAllNodes::Dictionary 202
DisposeAllNodes::IntegerDictionary 223
DisposeAllNodes::LinkList 237
DisposeAllNodes::Set . 307
DisposeAllNodes::StringDictionary 357
DisposeAllNodes1::Set . 308
DisposeFirst::LinkList . 238
DisposeGroup::Set . 308
DisposeInt::IntegerDictionary 223
DisposeLast::LinkList . 238
DisposeObj::BTree . 171
DisposeObj::Dictionary . 202
DisposeObj::Set . 308
DisposePropertyList::PropertyList 295
DisposeStr::StringDictionary 357
DoesNotImplement::Behavior 98
DontCollect::Behavior . 99
DoubleValue::Number . 267
DoubleValue::NumberArray 277
Drop::String . 338
DumpMemoryDiff::Dynace . 118
DumpObjects::Dynace . 118
DumpObjectsDiff::Dynace . 119
DumpObjectsString::Dynace 120
Dynace_GetInitialPageSize 154
Dynace_GetPageSize . 154

E
ENABLE_THREADER . 366
EndOfStream::Stream . 321
END . 137
Equal::Array . 163
Equal::Constant . 183
Equal::Object . 92
Equal::String . 339
EQ . 137

Method, Macro, Function And Variable Index 385

Error::Object . 92
externGeneric . 138

F
FileHandle::LowFile . 262
Find::Dictionary . 203
Find::Set . 309
FindAdd::Set . 309
FindAddInt::IntegerDictionary 224
FindAddStr::StringDictionary 358
FindAddValue::Dictionary 203
FindClass::Class . 106
FindEQ::BTree . 172
FindFirst::BTree . 172
FindGE::BTree . 173
FindGeneric::GenericFunction 113
FindGT::BTree . 173
FindInt::IntegerDictionary 223
FindLast::BTree . 174
FindLE::BTree . 174
FindLT::BTree . 175
FindMethod::Behavior . 99
FindMethodObject::Behavior 100
FindNext::BTree . 175
FindPrev::BTree . 176
FindStr::Pipe . 286
FindStr::Semaphore . 298
FindStr::StringDictionary 357
FindStr::Thread . 360
FindValue::Dictionary . 203
FindValueInt::IntegerDictionary 224
FindValueStr::StringDictionary 358
First::LinkList . 238
First::LinkObject . 243
First::Set . 309
FixInvalidDate::Date . 184
Flush::File . 208, 210
ForAll::Set . 310
FormatChar::Character . 180
FormatDate::Date . 189
FormatDateTime::DateTime 197
FormatNumber::Number . 267
FormatTime::Time . 374
Function::Method . 111

G
GC::Dynace . 120
GCDispose::Object . 93
Generic . 138
GetAll::Class . 106
GetAll::GenericFunction . 113
GetArg . 139
GetCVs . 139
GetErrorCode::Socket . 317
GetGenericPtr::GenericFunction 114
GetIVptr . 155

GetIVs . 140
Gets::Stream . 322
GetValues::LinkObject . 244
GroupRemove::Set . 310

H
Hash::Association . 166
Hash::DateTime . 198
Hash::Number . 268
Hash::Object . 93
Hash::Pointer . 291
Hash::String . 339
Hash::Time . 375
Hold::Thread . 363
Hours::Time . 375

I
imcPointer . 140
imeth . 141
iMethodFor . 141
imiPointer . 142
IncNelm::LinkList . 239
Index::Array . 163
IndexOrigin::Array . 161
INHIBIT_THREADER . 367
Init::Object . 93
InitDynace . 155
InitGeneric . 143
InitKernel . 156
InitLink::Link . 229
InstanceSize::Behavior . 100
IntKey::IntegerAssociation 220
IntValue::Thread . 363
InvalidObject::GenericFunction 114
InvalidType::GenericFunction 115
Iota::ShortArray . 314
IsaClass . 143
IsaMetaClass . 144
IsInstanceOf . 144
IsKindOf::Behavior . 100
IsKindOf::Object . 94
IsObj . 156
iSuper . 145
ivMethodFor . 146
ivPtr . 146
ivsPtr . 147
ivType . 148

J
Julian::Date . 189
JulToCal::Date . 185
JustifyCenter::String . 340
JustifyLeft::String . 340
JustifyRight::String . 341

386 Dynace Manual

K
Key::LookupKey . 259
Key::StringAssociation . 353
Kill::Thread . 364

L
Last::LinkList . 239
Last::LinkObject . 244
Length::FindFile . 214
Length::Pipe . 288
Length::Stream . 322
List::Link . 229
LongValue::Number . 268
LongValue::NumberArray . 278
LongValue::Time . 375

M
MAKE_REST . 149
MakeList::LinkObject . 245
MarkingMethod::Behavior . 101
MarkMemoryBeginning::Dynace 120
MaskFunction::String . 328
MaxAfterGC::Dynace . 121
MaxMemUsed::Dynace . 121
Milliseconds::Time . 376
Minutes::Time . 376
Mode::Pipe . 288
MonthName::Date . 190
MoveAfter::Link . 230
MoveBefore::Link . 230
MoveBeginning::Link . 230
MoveEnd::Link . 231

N
Name::Behavior . 101
Name::File . 211
Name::FindFile . 214
Name::GenericFunction . 115
Name::LowFile . 262
Name::Method . 111
Name::Semaphore . 300
Name::Thread . 364
NEQ . 149
New::Behavior . 102
New::BitArray . 167
New::BTree . 169
New::Link . 226
New::LinkList . 234
New::NumberArray . 271
New::ObjectArray . 280
New::ObjectPool . 285
New::Pipe . 286
New::PointerArray . 293
New::Semaphore . 298
New::Set . 303

New::String . 328
NewClass::Class . 107
NewDateTime::DateTime . 192
NewFindFile::FindFile . 212
NewGeneric::GenericFunction 113
NewMethod::Method . 110
NewSemaphore::Semaphore . 298
NewStdClass::Class . 108
NewThread::Thread . 361
NewWithChar::Character . 179
NewWithDouble::DoubleFloat 205
NewWithInt::Set . 303
NewWithInt::ShortInteger 315
NewWithIntObj::IntegerAssociation 218
NewWithLong::LongInteger 257
NewWithLong::Time . 369
NewWithObj::LinkObjectSequence 249
NewWithObj::LinkSequence 251
NewWithObj::LinkValue . 253
NewWithObj::LookupKey . 258
NewWithObj::String . 329
NewWithObjObj::ObjectAssociation 282
NewWithPtr::Pointer . 290
NewWithStr::String . 329
NewWithStrInt::Pipe . 287
NewWithStrObj::StringAssociation 351
NewWithUnsigned::UnsignedShortInteger 381
Next::Link . 231
Next::LinkObjectSequence 249
Next::LinkSequence . 251
Next::SetSequence . 313
NextFile::FindFile . 215
Now::DateTime . 192
Now::Time . 369
Nth::Link . 231
Nth::LinkObject . 245
NumbGC::Dynace . 122
NumbPieces::String . 341

O
object . 158
ObjectChecking::Dynace . 122
ofun . 158
OpenFile::File . 208
OpenLowFile::LowFile . 261
OpenTempFile::File . 209
oSuper . 150

Method, Macro, Function And Variable Index 387

P
Piece::String . 342
PointerValue::File . 211
PointerValue::Pointer . 291
PointerValue::PointerArray 293
Pop::LinkObject . 246
Position::Stream . 322
Previous::Link . 232
Print::Object . 94
Printf::Stream . 323
PrintLength::String . 342
PrintValue::Object . 95
Priority::Thread . 364
Process::String . 343
PropertyGet::PropertyList 295
PropertyPut::PropertyList 296
PropertyRemove::PropertyList 296
Push::LinkObject . 246
Putc::Stream . 323
Puts::Stream . 323

R
Rank::Array . 163
Read::Socket . 317
Read::Stream . 324
RecvFile::Socket . 318
RegisterMemory::Dynace . 123
RegisterVariable . 151
Release::Semaphore . 300
Release::Thread . 365
Remove::Link . 232
Remove::LinkList . 239
RemoveFirst::LinkList . 239
RemoveInt::IntegerDictionary 224
RemoveLast::LinkList . 240
RemoveMask::String . 344
RemoveObj::Dictionary . 204
RemoveObj::Set . 310
RemoveRegisteredMemory::Dynace 124
RemoveStr::StringDictionary 358
RESET_REST . 151
Reshape::Array . 164
Resize::Set . 311
ResizeMethodCache::Dynace 124
RespondsTo . 152
Retreat::Stream . 324
Room::Pipe . 289
Round::DoubleFloat . 205

S
Seconds::Time . 377
Seek::Stream . 325
SendFile::Socket . 318
Sequence::LinkList . 240
Sequence::LinkObject . 247
Sequence::Set . 311
SequenceLinks::LinkObject 247
SetFunction::BTree . 176
SetMaskFiller::String . 344
SetMemoryBufferArea::Dynace 125
SetTempSubDir::File . 209
Shape::Array . 164
ShortValue::Number . 269
ShortValue::NumberArray . 278
ShouldNotImplement::Object 95
Size::Array . 164
Size::BTree . 177
Size::LinkList . 241
Size::Object . 96
Size::Pipe . 289
Size::Set . 312
Size::String . 345
SocketConnect::Socket . 316
Sprintf::String . 330
StackAlloc . 152
StackAlloc::Behavior . 102
StartThreader . 367
State::Thread . 365
stderrStream::Stream . 325
stdinStream::Stream . 326
stdoutStream::Stream . 326
StringKey::StringAssociation 353
StringRep::Array . 165
StringRep::Behavior . 103
StringRep::Link . 232
StringRep::LinkList . 241
StringRep::LinkValue . 254
StringRep::Object . 96
StringRep::Set . 312
StringRepValue::Array . 165
StringRepValue::Behavior 103
StringRepValue::Date . 190
StringRepValue::DateTime 198
StringRepValue::IntegerAssociation 220
StringRepValue::Link . 233
StringRepValue::LinkValue 255
StringRepValue::LookupKey 260
StringRepValue::Number . 269
StringRepValue::Object . 97
StringRepValue::ObjectAssociation 283
StringRepValue::Pointer . 292
StringRepValue::String . 345
StringRepValue::StringAssociation 354
StringRepValue::Time . 377
StringValue::String . 346
StripCenter::String . 346
StripLeft::String . 347

388 Dynace Manual

StripRight::String . 347
SubClasses::Behavior . 103
SubclassResponsibility::Object 97
SubString::String . 348
SuperClasses::Behavior . 104

T
Take::String . 348
TimeDifference::Time . 378
TimedRead::Socket . 319
TimedWrite::Socket . 319
TimeStringRepValue::Time 378
TimeValue::Time . 379
Today::Date . 185
ToLower::String . 349
ToUpper::String . 349
Trace::Behavior . 104
Trace::Dynace . 126
Trace::GenericFunction . 115
Trace::Method . 111
TracePrint::Dynace . 127
traceStream::Stream . 326
Truncate::DoubleFloat . 206

U
UnsignedShortValue::Number 270
UnsignedShortValue::NumberArray 279

V
ValidDate::Date . 191
ValidDateTime::DateTime . 198
ValidTime::Time . 379
Value::IntegerAssociation 220
Value::LinkValue . 255
Value::ObjectArray . 280
Value::ObjectAssociation 284
Value::StringAssociation 354

W
WaitFor::Semaphore . 301
WaitFor::Thread . 366
Write::Socket . 320
Write::Stream . 325
WriteTime::FindFile . 215

Y
YIELD . 368

